Prakalkulus Contoh

Tentukan Pusatnya -2x^2+3y^2-8x+6y-11=0
Langkah 1
Tentukan bentuk baku dari hiperbola.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Tambahkan ke kedua sisi persamaan.
Langkah 1.2
Selesaikan kuadrat dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Gunakan bentuk , untuk menemukan nilai dari , , dan .
Langkah 1.2.2
Mempertimbangkan bentuk verteks parabola.
Langkah 1.2.3
Temukan nilai dari menggunakan rumus .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.3.1
Substitusikan nilai-nilai dari dan ke dalam rumus .
Langkah 1.2.3.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.3.2.1
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.3.2.1.1
Faktorkan dari .
Langkah 1.2.3.2.1.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.3.2.1.2.1
Faktorkan dari .
Langkah 1.2.3.2.1.2.2
Batalkan faktor persekutuan.
Langkah 1.2.3.2.1.2.3
Tulis kembali pernyataannya.
Langkah 1.2.3.2.2
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.3.2.2.1
Faktorkan dari .
Langkah 1.2.3.2.2.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.3.2.2.2.1
Faktorkan dari .
Langkah 1.2.3.2.2.2.2
Batalkan faktor persekutuan.
Langkah 1.2.3.2.2.2.3
Tulis kembali pernyataannya.
Langkah 1.2.3.2.2.2.4
Bagilah dengan .
Langkah 1.2.4
Temukan nilai dari menggunakan rumus .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.4.1
Substitusikan nilai-nilai dari , , dan ke dalam rumus .
Langkah 1.2.4.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.4.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.4.2.1.1
Naikkan menjadi pangkat .
Langkah 1.2.4.2.1.2
Kalikan dengan .
Langkah 1.2.4.2.1.3
Bagilah dengan .
Langkah 1.2.4.2.1.4
Kalikan dengan .
Langkah 1.2.4.2.2
Tambahkan dan .
Langkah 1.2.5
Substitusikan nilai-nilai dari , , dan ke dalam bentuk verteks .
Langkah 1.3
Substitusikan untuk dalam persamaan .
Langkah 1.4
Pindahkan ke sisi kanan persamaan dengan menambahkan ke kedua sisinya.
Langkah 1.5
Selesaikan kuadrat dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.5.1
Gunakan bentuk , untuk menemukan nilai dari , , dan .
Langkah 1.5.2
Mempertimbangkan bentuk verteks parabola.
Langkah 1.5.3
Temukan nilai dari menggunakan rumus .
Ketuk untuk lebih banyak langkah...
Langkah 1.5.3.1
Substitusikan nilai-nilai dari dan ke dalam rumus .
Langkah 1.5.3.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.5.3.2.1
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 1.5.3.2.1.1
Faktorkan dari .
Langkah 1.5.3.2.1.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 1.5.3.2.1.2.1
Faktorkan dari .
Langkah 1.5.3.2.1.2.2
Batalkan faktor persekutuan.
Langkah 1.5.3.2.1.2.3
Tulis kembali pernyataannya.
Langkah 1.5.3.2.2
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.5.3.2.2.1
Batalkan faktor persekutuan.
Langkah 1.5.3.2.2.2
Tulis kembali pernyataannya.
Langkah 1.5.4
Temukan nilai dari menggunakan rumus .
Ketuk untuk lebih banyak langkah...
Langkah 1.5.4.1
Substitusikan nilai-nilai dari , , dan ke dalam rumus .
Langkah 1.5.4.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.5.4.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.5.4.2.1.1
Naikkan menjadi pangkat .
Langkah 1.5.4.2.1.2
Kalikan dengan .
Langkah 1.5.4.2.1.3
Bagilah dengan .
Langkah 1.5.4.2.1.4
Kalikan dengan .
Langkah 1.5.4.2.2
Kurangi dengan .
Langkah 1.5.5
Substitusikan nilai-nilai dari , , dan ke dalam bentuk verteks .
Langkah 1.6
Substitusikan untuk dalam persamaan .
Langkah 1.7
Pindahkan ke sisi kanan persamaan dengan menambahkan ke kedua sisinya.
Langkah 1.8
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 1.8.1
Kurangi dengan .
Langkah 1.8.2
Tambahkan dan .
Langkah 1.9
Bagi setiap suku dengan untuk membuat sisi kanan sama dengan satu.
Langkah 1.10
Sederhanakan setiap suku dalam persamaan tersebut agar sisi kanan sama dengan . Bentuk baku dari elips atau hiperbola mengharuskan sisi kanan persamaan menjadi .
Langkah 2
Ini adalah bentuk dari hiperbola. Gunakan bentuk ini untuk menentukan nilai-nilai yang digunakan untuk menentukan verteks dan asimtot hiperbola tersebut.
Langkah 3
Sesuaikan nilai-nilai dari hiperbola ini dengan bentuk baku tersebut. Variabel mewakili x-offset dari titik asal, mewakili y-offset dari titik asal, .
Langkah 4
Pusat hiperbola mengikuti bentuk dari . Masukkan nilai-nilai dari dan .
Langkah 5