Prakalkulus Contoh

Periksa Identitasnya (tan(x)-cot(x))/(tan(x)+cot(x))=1-2cos(x)^2
tan(x)-cot(x)tan(x)+cot(x)=1-2cos2(x)tan(x)cot(x)tan(x)+cot(x)=12cos2(x)
Langkah 1
Mulai dari sisi kiri.
tan(x)-cot(x)tan(x)+cot(x)tan(x)cot(x)tan(x)+cot(x)
Langkah 2
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 2.1.1
Tulis kembali tan(x)tan(x) dalam bentuk sinus dan kosinus.
sin(x)cos(x)-cot(x)tan(x)+cot(x)sin(x)cos(x)cot(x)tan(x)+cot(x)
Langkah 2.1.2
Tulis kembali cot(x)cot(x) dalam bentuk sinus dan kosinus.
sin(x)cos(x)-cos(x)sin(x)tan(x)+cot(x)sin(x)cos(x)cos(x)sin(x)tan(x)+cot(x)
sin(x)cos(x)-cos(x)sin(x)tan(x)+cot(x)sin(x)cos(x)cos(x)sin(x)tan(x)+cot(x)
Langkah 2.2
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Tulis kembali tan(x)tan(x) dalam bentuk sinus dan kosinus.
sin(x)cos(x)-cos(x)sin(x)sin(x)cos(x)+cot(x)sin(x)cos(x)cos(x)sin(x)sin(x)cos(x)+cot(x)
Langkah 2.2.2
Tulis kembali cot(x)cot(x) dalam bentuk sinus dan kosinus.
sin(x)cos(x)-cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)sin(x)cos(x)cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)
sin(x)cos(x)-cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)sin(x)cos(x)cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)
Langkah 2.3
Multiply the numerator and denominator of the fraction by cos(x)sin(x)cos(x)sin(x).
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Kalikan sin(x)cos(x)-cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)sin(x)cos(x)cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x) dengan cos(x)sin(x)cos(x)sin(x)cos(x)sin(x)cos(x)sin(x).
cos(x)sin(x)cos(x)sin(x)sin(x)cos(x)-cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)cos(x)sin(x)sin(x)cos(x)cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)
Langkah 2.3.2
Gabungkan.
cos(x)sin(x)(sin(x)cos(x)-cos(x)sin(x))cos(x)sin(x)(sin(x)cos(x)+cos(x)sin(x))cos(x)sin(x)(sin(x)cos(x)cos(x)sin(x))cos(x)sin(x)(sin(x)cos(x)+cos(x)sin(x))
cos(x)sin(x)(sin(x)cos(x)-cos(x)sin(x))cos(x)sin(x)(sin(x)cos(x)+cos(x)sin(x))cos(x)sin(x)(sin(x)cos(x)cos(x)sin(x))cos(x)sin(x)(sin(x)cos(x)+cos(x)sin(x))
Langkah 2.4
Terapkan sifat distributif.
cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)(-cos(x)sin(x))cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)(cos(x)sin(x))cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)
Langkah 2.5
Sederhanakan dengan cara membatalkan .
Ketuk untuk lebih banyak langkah...
Langkah 2.5.1
Batalkan faktor persekutuan dari cos(x)cos(x).
Ketuk untuk lebih banyak langkah...
Langkah 2.5.1.1
Faktorkan cos(x)cos(x) dari cos(x)sin(x)cos(x)sin(x).
cos(x)(sin(x))sin(x)cos(x)+cos(x)sin(x)(-cos(x)sin(x))cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)cos(x)(sin(x))sin(x)cos(x)+cos(x)sin(x)(cos(x)sin(x))cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)
Langkah 2.5.1.2
Batalkan faktor persekutuan.
cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)(-cos(x)sin(x))cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)(cos(x)sin(x))cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)
Langkah 2.5.1.3
Tulis kembali pernyataannya.
sin(x)sin(x)+cos(x)sin(x)(-cos(x)sin(x))cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)sin(x)sin(x)+cos(x)sin(x)(cos(x)sin(x))cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)
sin(x)sin(x)+cos(x)sin(x)(-cos(x)sin(x))cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)sin(x)sin(x)+cos(x)sin(x)(cos(x)sin(x))cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)
Langkah 2.5.2
Naikkan sin(x)sin(x) menjadi pangkat 11.
sin1(x)sin(x)+cos(x)sin(x)(-cos(x)sin(x))cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)sin1(x)sin(x)+cos(x)sin(x)(cos(x)sin(x))cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)
Langkah 2.5.3
Naikkan sin(x)sin(x) menjadi pangkat 11.
sin1(x)sin1(x)+cos(x)sin(x)(-cos(x)sin(x))cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)sin1(x)sin1(x)+cos(x)sin(x)(cos(x)sin(x))cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)
Langkah 2.5.4
Gunakan kaidah pangkat aman=am+naman=am+n untuk menggabungkan pangkat.
sin(x)1+1+cos(x)sin(x)(-cos(x)sin(x))cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)sin(x)1+1+cos(x)sin(x)(cos(x)sin(x))cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)
Langkah 2.5.5
Tambahkan 11 dan 11.
sin2(x)+cos(x)sin(x)(-cos(x)sin(x))cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)sin2(x)+cos(x)sin(x)(cos(x)sin(x))cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)
Langkah 2.5.6
Batalkan faktor persekutuan dari sin(x)sin(x).
Ketuk untuk lebih banyak langkah...
Langkah 2.5.6.1
Pindahkan negatif pertama pada -cos(x)sin(x)cos(x)sin(x) ke dalam pembilangnya.
sin2(x)+cos(x)sin(x)-cos(x)sin(x)cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)sin2(x)+cos(x)sin(x)cos(x)sin(x)cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)
Langkah 2.5.6.2
Faktorkan sin(x)sin(x) dari cos(x)sin(x)cos(x)sin(x).
sin2(x)+sin(x)cos(x)-cos(x)sin(x)cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)sin2(x)+sin(x)cos(x)cos(x)sin(x)cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)
Langkah 2.5.6.3
Batalkan faktor persekutuan.
sin2(x)+sin(x)cos(x)-cos(x)sin(x)cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)sin2(x)+sin(x)cos(x)cos(x)sin(x)cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)
Langkah 2.5.6.4
Tulis kembali pernyataannya.
sin2(x)+cos(x)(-cos(x))cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)sin2(x)+cos(x)(cos(x))cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)
sin2(x)+cos(x)(-cos(x))cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)sin2(x)+cos(x)(cos(x))cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)
Langkah 2.5.7
Naikkan cos(x)cos(x) menjadi pangkat 11.
sin2(x)-(cos1(x)cos(x))cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)sin2(x)(cos1(x)cos(x))cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)
Langkah 2.5.8
Naikkan cos(x)cos(x) menjadi pangkat 11.
sin2(x)-(cos1(x)cos1(x))cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)sin2(x)(cos1(x)cos1(x))cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)
Langkah 2.5.9
Gunakan kaidah pangkat aman=am+naman=am+n untuk menggabungkan pangkat.
sin2(x)-cos(x)1+1cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)sin2(x)cos(x)1+1cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)
Langkah 2.5.10
Tambahkan 11 dan 11.
sin2(x)-cos2(x)cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)sin2(x)cos2(x)cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)
Langkah 2.5.11
Batalkan faktor persekutuan dari cos(x)cos(x).
Ketuk untuk lebih banyak langkah...
Langkah 2.5.11.1
Faktorkan cos(x)cos(x) dari cos(x)sin(x)cos(x)sin(x).
sin2(x)-cos2(x)cos(x)(sin(x))sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)sin2(x)cos2(x)cos(x)(sin(x))sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)
Langkah 2.5.11.2
Batalkan faktor persekutuan.
sin2(x)-cos2(x)cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)sin2(x)cos2(x)cos(x)sin(x)sin(x)cos(x)+cos(x)sin(x)cos(x)sin(x)
Langkah 2.5.11.3
Tulis kembali pernyataannya.
sin2(x)-cos2(x)sin(x)sin(x)+cos(x)sin(x)cos(x)sin(x)sin2(x)cos2(x)sin(x)sin(x)+cos(x)sin(x)cos(x)sin(x)
sin2(x)-cos2(x)sin(x)sin(x)+cos(x)sin(x)cos(x)sin(x)sin2(x)cos2(x)sin(x)sin(x)+cos(x)sin(x)cos(x)sin(x)
Langkah 2.5.12
Naikkan sin(x)sin(x) menjadi pangkat 11.
sin2(x)-cos2(x)sin1(x)sin(x)+cos(x)sin(x)cos(x)sin(x)sin2(x)cos2(x)sin1(x)sin(x)+cos(x)sin(x)cos(x)sin(x)
Langkah 2.5.13
Naikkan sin(x)sin(x) menjadi pangkat 11.
sin2(x)-cos2(x)sin1(x)sin1(x)+cos(x)sin(x)cos(x)sin(x)sin2(x)cos2(x)sin1(x)sin1(x)+cos(x)sin(x)cos(x)sin(x)
Langkah 2.5.14
Gunakan kaidah pangkat aman=am+naman=am+n untuk menggabungkan pangkat.
sin2(x)-cos2(x)sin(x)1+1+cos(x)sin(x)cos(x)sin(x)sin2(x)cos2(x)sin(x)1+1+cos(x)sin(x)cos(x)sin(x)
Langkah 2.5.15
Tambahkan 11 dan 11.
sin2(x)-cos2(x)sin2(x)+cos(x)sin(x)cos(x)sin(x)sin2(x)cos2(x)sin2(x)+cos(x)sin(x)cos(x)sin(x)
Langkah 2.5.16
Batalkan faktor persekutuan dari sin(x).
Ketuk untuk lebih banyak langkah...
Langkah 2.5.16.1
Faktorkan sin(x) dari cos(x)sin(x).
sin2(x)-cos2(x)sin2(x)+sin(x)cos(x)cos(x)sin(x)
Langkah 2.5.16.2
Batalkan faktor persekutuan.
sin2(x)-cos2(x)sin2(x)+sin(x)cos(x)cos(x)sin(x)
Langkah 2.5.16.3
Tulis kembali pernyataannya.
sin2(x)-cos2(x)sin2(x)+cos(x)cos(x)
sin2(x)-cos2(x)sin2(x)+cos(x)cos(x)
Langkah 2.5.17
Naikkan cos(x) menjadi pangkat 1.
sin2(x)-cos2(x)sin2(x)+cos1(x)cos(x)
Langkah 2.5.18
Naikkan cos(x) menjadi pangkat 1.
sin2(x)-cos2(x)sin2(x)+cos1(x)cos1(x)
Langkah 2.5.19
Gunakan kaidah pangkat aman=am+n untuk menggabungkan pangkat.
sin2(x)-cos2(x)sin2(x)+cos(x)1+1
Langkah 2.5.20
Tambahkan 1 dan 1.
sin2(x)-cos2(x)sin2(x)+cos2(x)
sin2(x)-cos2(x)sin2(x)+cos2(x)
Langkah 2.6
Terapkan identitas pythagoras.
sin2(x)-cos2(x)1
Langkah 2.7
Bagilah sin2(x)-cos2(x) dengan 1.
sin2(x)-cos2(x)
sin2(x)-cos2(x)
Langkah 3
Terapkan identitas Pythagoras secara terbalik.
1-cos2(x)-cos2(x)
Langkah 4
Kurangi cos(x)2 dengan -cos(x)2.
1-2cos2(x)
Langkah 5
Karena kedua sisi telah terbukti setara, maka persamaan tersebut adalah sebuah identitas.
tan(x)-cot(x)tan(x)+cot(x)=1-2cos2(x) adalah identitas
 [x2  12  π  xdx ]