Masukkan soal...
Prakalkulus Contoh
Langkah 1
Konversikan pertidaksamaan ke persamaan.
Langkah 2
Langkah 2.1
Untuk polinomial dari bentuk , tulis kembali suku tengahnya sebagai penjumlahan dari dua suku yang hasil kalinya adalah dan yang jumlahnya adalah .
Langkah 2.1.1
Faktorkan dari .
Langkah 2.1.2
Tulis kembali sebagai ditambah
Langkah 2.1.3
Terapkan sifat distributif.
Langkah 2.2
Faktorkan faktor persekutuan terbesar dari setiap kelompok.
Langkah 2.2.1
Kelompokkan dua suku pertama dan dua suku terakhir.
Langkah 2.2.2
Faktorkan faktor persekutuan terbesar (FPB) dari setiap kelompok.
Langkah 2.3
Faktorkan polinomial dengan memfaktorkan faktor persekutuan terbesar, .
Langkah 3
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 4
Langkah 4.1
Atur sama dengan .
Langkah 4.2
Selesaikan untuk .
Langkah 4.2.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 4.2.2
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 4.2.2.1
Bagilah setiap suku di dengan .
Langkah 4.2.2.2
Sederhanakan sisi kirinya.
Langkah 4.2.2.2.1
Batalkan faktor persekutuan dari .
Langkah 4.2.2.2.1.1
Batalkan faktor persekutuan.
Langkah 4.2.2.2.1.2
Bagilah dengan .
Langkah 4.2.2.3
Sederhanakan sisi kanannya.
Langkah 4.2.2.3.1
Pindahkan tanda negatif di depan pecahan.
Langkah 5
Langkah 5.1
Atur sama dengan .
Langkah 5.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 6
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 7
Gunakan masing-masing akar untuk membuat interval pengujian.
Langkah 8
Langkah 8.1
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Langkah 8.1.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 8.1.2
Ganti dengan pada pertidaksamaan asal.
Langkah 8.1.3
Sisi kiri lebih besar dari sisi kanan , yang berarti pernyataan yang diberikan salah.
Salah
Salah
Langkah 8.2
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Langkah 8.2.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 8.2.2
Ganti dengan pada pertidaksamaan asal.
Langkah 8.2.3
Sisi kiri lebih kecil dari sisi kanan , yang berarti pernyataan yang diberikan selalu benar.
Benar
Benar
Langkah 8.3
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Langkah 8.3.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 8.3.2
Ganti dengan pada pertidaksamaan asal.
Langkah 8.3.3
Sisi kiri lebih besar dari sisi kanan , yang berarti pernyataan yang diberikan salah.
Salah
Salah
Langkah 8.4
Bandingkan interval untuk menentukan mana yang memenuhi pertidaksamaan asal.
Salah
Benar
Salah
Salah
Benar
Salah
Langkah 9
Penyelesaian tersebut terdiri dari semua interval hakiki.
Langkah 10
Hasilnya dapat ditampilkan dalam beberapa bentuk.
Bentuk Ketidaksamaan:
Notasi Interval:
Langkah 11