Prakalkulus Contoh

Selesaikan untuk x sin(x)^2=3/10
Langkah 1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Langkah 2
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Tulis kembali sebagai .
Langkah 2.2
Kalikan dengan .
Langkah 2.3
Gabungkan dan sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Kalikan dengan .
Langkah 2.3.2
Naikkan menjadi pangkat .
Langkah 2.3.3
Naikkan menjadi pangkat .
Langkah 2.3.4
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.3.5
Tambahkan dan .
Langkah 2.3.6
Tulis kembali sebagai .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.6.1
Gunakan untuk menuliskan kembali sebagai .
Langkah 2.3.6.2
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 2.3.6.3
Gabungkan dan .
Langkah 2.3.6.4
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.6.4.1
Batalkan faktor persekutuan.
Langkah 2.3.6.4.2
Tulis kembali pernyataannya.
Langkah 2.3.6.5
Evaluasi eksponennya.
Langkah 2.4
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 2.4.1
Gabungkan menggunakan kaidah hasil kali untuk akar.
Langkah 2.4.2
Kalikan dengan .
Langkah 3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 3.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 3.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 4
Tulis setiap penyelesaian untuk menyelesaikan .
Langkah 5
Selesaikan dalam .
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Ambil sinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam sinus.
Langkah 5.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1
Evaluasi .
Langkah 5.3
Fungsi sinus positif di kuadran pertama dan kedua. Untuk menemukan penyelesaian kedua, kurangi sudut acuan dari untuk menemukan penyelesaian di kuadran kedua.
Langkah 5.4
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 5.4.1
Hilangkan tanda kurung.
Langkah 5.4.2
Hilangkan tanda kurung.
Langkah 5.4.3
Kurangi dengan .
Langkah 5.5
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 5.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 5.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 5.5.4
Bagilah dengan .
Langkah 5.6
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 6
Selesaikan dalam .
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Ambil sinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam sinus.
Langkah 6.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1
Evaluasi .
Langkah 6.3
Fungsi sinus negatif pada kuadran ketiga dan keempat. Untuk menemukan penyelesaian kedua, kurangi penyelesaian dari , untuk mencari sudut acuan. Selanjutnya, tambahkan sudut acuan ini ke untuk mencari penyelesaian pada kuadran ketiga.
Langkah 6.4
Sederhanakan pernyataan untuk menentukan penyelesaian yang kedua.
Ketuk untuk lebih banyak langkah...
Langkah 6.4.1
Kurangi dengan .
Langkah 6.4.2
Sudut yang dihasilkan dari positif, lebih kecil dari , dan koterminal dengan .
Langkah 6.5
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 6.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 6.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 6.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 6.5.4
Bagilah dengan .
Langkah 6.6
Tambahkan ke setiap sudut negatif untuk memperoleh sudut positif.
Ketuk untuk lebih banyak langkah...
Langkah 6.6.1
Tambahkan ke untuk menentukan sudut positif.
Langkah 6.6.2
Kurangi dengan .
Langkah 6.6.3
Sebutkan sudut-sudut barunya.
Langkah 6.7
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 7
Sebutkan semua penyelesaiannya.
, untuk sebarang bilangan bulat
Langkah 8
Gabungkan penyelesaiannya.
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Gabungkan dan menjadi .
, untuk sebarang bilangan bulat
Langkah 8.2
Gabungkan dan menjadi .
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat