Prakalkulus Contoh

Grafik y=cot(x-pi/2)
Langkah 1
Tentukan asimtot.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Untuk sebarang , asimtot tegak terjadi pada , di mana adalah bilangan bulat. Gunakan periode dasar untuk , , untuk menentukan asimtot tegak untuk . Atur bagian dalam fungsi kotangen, , untuk agar sama dengan untuk menentukan di mana asimtot tegaknya terjadi untuk .
Langkah 1.2
Tambahkan ke kedua sisi persamaan.
Langkah 1.3
Atur bilangan di dalam fungsi kotangen agar sama dengan .
Langkah 1.4
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 1.4.1
Tambahkan ke kedua sisi persamaan.
Langkah 1.4.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 1.4.3
Gabungkan dan .
Langkah 1.4.4
Gabungkan pembilang dari penyebut persekutuan.
Langkah 1.4.5
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.4.5.1
Pindahkan ke sebelah kiri .
Langkah 1.4.5.2
Tambahkan dan .
Langkah 1.5
Periode dasar untuk akan terjadi pada , di mana dan adalah asimtot tegak.
Langkah 1.6
Tentukan periode untuk menemukan di mana asimtot tegaknya berada.
Ketuk untuk lebih banyak langkah...
Langkah 1.6.1
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 1.6.2
Bagilah dengan .
Langkah 1.7
Asimtot tegak untuk muncul pada , , dan setiap , di mana adalah bilangan bulat.
Langkah 1.8
kotangen hanya mempunyai asimtot tegak.
Tidak Ada Asimtot Datar
Tidak Ada Asimtot Miring
Asimtot Tegak: di mana adalah bilangan bulat
Tidak Ada Asimtot Datar
Tidak Ada Asimtot Miring
Asimtot Tegak: di mana adalah bilangan bulat
Langkah 2
Gunakan bentuk untuk menemukan variabel yang digunakan untuk menentukan amplitudo, periode, geseran fase, dan pergeseran tegak.
Langkah 3
Karena grafik fungsi tidak memiliki nilai maksimum ataupun minimum, tidak ada nilai untuk amplitudonya.
Amplitudo: Tidak Ada
Langkah 4
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Periode fungsi dapat dihitung menggunakan .
Langkah 4.2
Ganti dengan dalam rumus untuk periode.
Langkah 4.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 4.4
Bagilah dengan .
Langkah 5
Tentukan geseran fase menggunakan rumus .
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Geseran fase fungsi dapat dihitung dari .
Geseran Fase:
Langkah 5.2
Ganti nilai dari dan dalam persamaan untuk geseran fase.
Geseran Fase:
Langkah 5.3
Bagilah dengan .
Geseran Fase:
Geseran Fase:
Langkah 6
Sebutkan sifat-sifat fungsi trigonometri.
Amplitudo: Tidak Ada
Periode:
Geseran Fase: ( ke kanan)
Pergeseran Tegak: Tidak Ada
Langkah 7
Fungsi trigonometri dapat digambar menggunakan amplitudo, periode, geseran fase, pergeseran tegak, dan titik-titik.
Asimtot Tegak: di mana adalah bilangan bulat
Amplitudo: Tidak Ada
Periode:
Geseran Fase: ( ke kanan)
Pergeseran Tegak: Tidak Ada
Langkah 8