Masukkan soal...
Prakalkulus Contoh
Langkah 1
Atur bilangan di bawah akar dalam agar lebih besar dari atau sama dengan untuk menentukan di mana pernyataannya terdefinisi.
Langkah 2
Langkah 2.1
Konversikan pertidaksamaan ke persamaan.
Langkah 2.2
Faktorkan sisi kiri persamaannya.
Langkah 2.2.1
Faktorkan dari .
Langkah 2.2.1.1
Faktorkan dari .
Langkah 2.2.1.2
Faktorkan dari .
Langkah 2.2.1.3
Faktorkan dari .
Langkah 2.2.2
Tulis kembali sebagai .
Langkah 2.2.3
Faktorkan.
Langkah 2.2.3.1
Karena kedua suku merupakan kuadrat sempurna, faktorkan menggunakan rumus beda pangkat dua, di mana dan .
Langkah 2.2.3.2
Hilangkan tanda kurung yang tidak perlu.
Langkah 2.3
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 2.4
Atur agar sama dengan dan selesaikan .
Langkah 2.4.1
Atur sama dengan .
Langkah 2.4.2
Selesaikan untuk .
Langkah 2.4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Langkah 2.4.2.2
Sederhanakan .
Langkah 2.4.2.2.1
Tulis kembali sebagai .
Langkah 2.4.2.2.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 2.4.2.2.3
Tambah atau kurang adalah .
Langkah 2.5
Atur agar sama dengan dan selesaikan .
Langkah 2.5.1
Atur sama dengan .
Langkah 2.5.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 2.6
Atur agar sama dengan dan selesaikan .
Langkah 2.6.1
Atur sama dengan .
Langkah 2.6.2
Tambahkan ke kedua sisi persamaan.
Langkah 2.7
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 2.8
Gunakan masing-masing akar untuk membuat interval pengujian.
Langkah 2.9
Pilih nilai uji dari masing-masing interval dan masukkan nilai ini ke dalam pertidaksamaan asal untuk menentukan interval mana yang memenuhi pertidaksamaan.
Langkah 2.9.1
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Langkah 2.9.1.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 2.9.1.2
Ganti dengan pada pertidaksamaan asal.
Langkah 2.9.1.3
Sisi kiri lebih besar dari sisi kanan , yang berarti pernyataan yang diberikan selalu benar.
True
True
Langkah 2.9.2
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Langkah 2.9.2.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 2.9.2.2
Ganti dengan pada pertidaksamaan asal.
Langkah 2.9.2.3
Sisi kiri lebih kecil dari sisi kanan , yang berarti pernyataan yang diberikan salah.
False
False
Langkah 2.9.3
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Langkah 2.9.3.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 2.9.3.2
Ganti dengan pada pertidaksamaan asal.
Langkah 2.9.3.3
Sisi kiri lebih kecil dari sisi kanan , yang berarti pernyataan yang diberikan salah.
False
False
Langkah 2.9.4
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Langkah 2.9.4.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 2.9.4.2
Ganti dengan pada pertidaksamaan asal.
Langkah 2.9.4.3
Sisi kiri lebih besar dari sisi kanan , yang berarti pernyataan yang diberikan selalu benar.
True
True
Langkah 2.9.5
Bandingkan interval untuk menentukan mana yang memenuhi pertidaksamaan asal.
Benar
Salah
Salah
Benar
Benar
Salah
Salah
Benar
Langkah 2.10
Penyelesaian tersebut terdiri dari semua interval hakiki.
atau atau
Langkah 2.11
Gabungkan interval-intervalnya.
Langkah 3
Domain adalah semua nilai dari yang membuat pernyataan tersebut terdefinisi.
Notasi Interval:
Notasi Pembuat Himpunan:
Langkah 4
Jangkauannya adalah himpunan dari semua nilai yang valid. Gunakan grafik untuk mencari intervalnya.
Notasi Interval:
Notasi Pembuat Himpunan:
Langkah 5
Tentukan domain dan daerah hasilnya.
Domain:
Daerah hasil:
Langkah 6