Prakalkulus Contoh

Selesaikan untuk ? sec(x)^2-2=0
Langkah 1
Tambahkan ke kedua sisi persamaan.
Langkah 2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Langkah 3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 3.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 3.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 4
Tulis setiap penyelesaian untuk menyelesaikan .
Langkah 5
Selesaikan dalam .
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Ambil sekan balikan dari kedua sisi persamaan untuk mendapatkan dari dalam sekan.
Langkah 5.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1
Nilai eksak dari adalah .
Langkah 5.3
Fungsi sekan positif di kuadran pertama dan keempat. Untuk menghitung penyelesaian kedua, kurangi sudut acuan dari untuk menghitung penyelesaian di kuadran keempat.
Langkah 5.4
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 5.4.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 5.4.2
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 5.4.2.1
Gabungkan dan .
Langkah 5.4.2.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 5.4.3
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 5.4.3.1
Kalikan dengan .
Langkah 5.4.3.2
Kurangi dengan .
Langkah 5.5
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 5.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 5.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 5.5.4
Bagilah dengan .
Langkah 5.6
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 6
Selesaikan dalam .
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Ambil sekan balikan dari kedua sisi persamaan untuk mendapatkan dari dalam sekan.
Langkah 6.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1
Nilai eksak dari adalah .
Langkah 6.3
Fungsi sekan negatif di kuadran kedua dan ketiga. Untuk menghitung penyelesaian kedua, kurangi sudut acuan dari untuk menghitung penyelesaian di kuadran ketiga.
Langkah 6.4
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 6.4.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 6.4.2
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 6.4.2.1
Gabungkan dan .
Langkah 6.4.2.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 6.4.3
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 6.4.3.1
Kalikan dengan .
Langkah 6.4.3.2
Kurangi dengan .
Langkah 6.5
Tentukan periode dari .
Ketuk untuk lebih banyak langkah...
Langkah 6.5.1
Periode fungsi dapat dihitung menggunakan .
Langkah 6.5.2
Ganti dengan dalam rumus untuk periode.
Langkah 6.5.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 6.5.4
Bagilah dengan .
Langkah 6.6
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat
, untuk sebarang bilangan bulat
Langkah 7
Sebutkan semua penyelesaiannya.
, untuk sebarang bilangan bulat
Langkah 8
Gabungkan jawabannya.
, untuk sebarang bilangan bulat