Prakalkulus Contoh

Identifikasi Nol dan Keberagamannya 2x^2(x-1)(x+2)^3(x^2+1)^2
Langkah 1
Atur sama dengan .
Langkah 2
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 2.2
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Atur sama dengan .
Langkah 2.2.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Langkah 2.2.2.2
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.2.2.1
Tulis kembali sebagai .
Langkah 2.2.2.2.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 2.2.2.2.3
Tambah atau kurang adalah .
Langkah 2.3
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Atur sama dengan .
Langkah 2.3.2
Tambahkan ke kedua sisi persamaan.
Langkah 2.4
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 2.4.1
Atur sama dengan .
Langkah 2.4.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 2.4.2.1
Atur agar sama dengan .
Langkah 2.4.2.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 2.5
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 2.5.1
Atur sama dengan .
Langkah 2.5.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 2.5.2.1
Atur agar sama dengan .
Langkah 2.5.2.2
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 2.5.2.2.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 2.5.2.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Langkah 2.5.2.2.3
Tulis kembali sebagai .
Langkah 2.5.2.2.4
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 2.5.2.2.4.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 2.5.2.2.4.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 2.5.2.2.4.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 2.6
Penyelesaian akhirnya adalah semua nilai yang membuat benar. Kegandaan dari akar adalah jumlah banyaknya akar tersebut muncul.
(Multiplisitas dari )
(Multiplisitas dari )
(Multiplisitas dari )
(Multiplisitas dari )
(Multiplisitas dari )
(Multiplisitas dari )
(Multiplisitas dari )
(Multiplisitas dari )
(Multiplisitas dari )
(Multiplisitas dari )
Langkah 3