Masukkan soal...
Prakalkulus Contoh
Langkah 1
Ambil kosinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam kosinus.
Langkah 2
Langkah 2.1
Nilai eksak dari adalah .
Langkah 3
Langkah 3.1
Tambahkan ke kedua sisi persamaan.
Langkah 3.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 3.3
Gabungkan dan .
Langkah 3.4
Gabungkan pembilang dari penyebut persekutuan.
Langkah 3.5
Sederhanakan pembilangnya.
Langkah 3.5.1
Pindahkan ke sebelah kiri .
Langkah 3.5.2
Tambahkan dan .
Langkah 4
Langkah 4.1
Bagilah setiap suku di dengan .
Langkah 4.2
Sederhanakan sisi kirinya.
Langkah 4.2.1
Batalkan faktor persekutuan dari .
Langkah 4.2.1.1
Batalkan faktor persekutuan.
Langkah 4.2.1.2
Bagilah dengan .
Langkah 4.3
Sederhanakan sisi kanannya.
Langkah 4.3.1
Kalikan pembilang dengan balikan dari penyebut.
Langkah 4.3.2
Kalikan .
Langkah 4.3.2.1
Kalikan dengan .
Langkah 4.3.2.2
Kalikan dengan .
Langkah 5
Fungsi kosinus negatif di kuadran kedua dan ketiga. Untuk menghitung penyelesaian kedua, kurangi sudut acuan dari untuk menghitung penyelesaian di kuadran ketiga.
Langkah 6
Langkah 6.1
Kurangi dengan .
Langkah 6.2
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Langkah 6.2.1
Tambahkan ke kedua sisi persamaan.
Langkah 6.2.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 6.2.3
Gabungkan dan .
Langkah 6.2.4
Gabungkan pembilang dari penyebut persekutuan.
Langkah 6.2.5
Sederhanakan pembilangnya.
Langkah 6.2.5.1
Pindahkan ke sebelah kiri .
Langkah 6.2.5.2
Tambahkan dan .
Langkah 6.3
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 6.3.1
Bagilah setiap suku di dengan .
Langkah 6.3.2
Sederhanakan sisi kirinya.
Langkah 6.3.2.1
Batalkan faktor persekutuan dari .
Langkah 6.3.2.1.1
Batalkan faktor persekutuan.
Langkah 6.3.2.1.2
Bagilah dengan .
Langkah 6.3.3
Sederhanakan sisi kanannya.
Langkah 6.3.3.1
Kalikan pembilang dengan balikan dari penyebut.
Langkah 6.3.3.2
Kalikan .
Langkah 6.3.3.2.1
Kalikan dengan .
Langkah 6.3.3.2.2
Kalikan dengan .
Langkah 7
Langkah 7.1
Periode fungsi dapat dihitung menggunakan .
Langkah 7.2
Ganti dengan dalam rumus untuk periode.
Langkah 7.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 7.4
Batalkan faktor persekutuan dari .
Langkah 7.4.1
Batalkan faktor persekutuan.
Langkah 7.4.2
Bagilah dengan .
Langkah 8
Periode dari fungsi adalah sehingga nilai-nilai akan berulang setiap radian di kedua arah.
, untuk sebarang bilangan bulat