Prakalkulus Contoh

Mencari Asimtot f(x)=(x^3-2x+3)/(x^2-5)
Langkah 1
Tentukan di mana pernyataan tidak terdefinisi.
Langkah 2
Karena ketika dari kiri dan ketika dari kanan, maka adalah asimtot tegak.
Langkah 3
Karena ketika dari kiri dan ketika dari kanan, maka adalah asimtot tegak.
Langkah 4
Sebutkan semua asimtot tegaknya:
Langkah 5
Mempertimbangkan fungsi rasional di mana merupakan derajat dari pembilangnya dan merupakan derajat dari penyebutnya.
1. Jika , maka sumbu-x, , adalah asimtot datar.
2. Jika , maka asimtot datarnya adalah garis .
3. Jika , maka tidak ada asimtot datar (ada sebuah asimstot miring).
Langkah 6
Temukan dan .
Langkah 7
Karena , tidak ada asimtot datar.
Tidak Ada Asimtot Datar
Langkah 8
Tentukan asimtot miring menggunakan pembagian polinomial.
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Tulis polinomial yang akan dibagi. Jika tidak ada suku untuk setiap eksponen, masukan suku dengan nilai .
+-+-+
Langkah 8.2
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
+-+-+
Langkah 8.3
Kalikan suku hasil bagi baru dengan pembagi.
+-+-+
++-
Langkah 8.4
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
+-+-+
--+
Langkah 8.5
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
+-+-+
--+
+
Langkah 8.6
Mengeluarkan suku berikutnya dari bilangan yang dibagi asli ke dalam bilangan yang dibagi saat ini.
+-+-+
--+
++
Langkah 8.7
Jawaban akhirnya adalah hasil bagi ditambah sisanya per pembagi.
Langkah 8.8
Asimtot miring adalah bagian polinomial dari hasil pembagian panjang.
Langkah 9
Ini adalah himpunan semua asimtot.
Asimtot Tegak:
Tidak Ada Asimtot Datar
Asimtot Miring:
Langkah 10