Masukkan soal...
Pra-Aljabar Contoh
Langkah 1
Tentukan di mana pernyataan tidak terdefinisi.
Langkah 2
Karena ketika dari kiri dan ketika dari kanan, maka adalah asimtot tegak.
Langkah 3
Karena ketika dari kiri dan ketika dari kanan, maka adalah asimtot tegak.
Langkah 4
Sebutkan semua asimtot tegaknya:
Langkah 5
Mempertimbangkan fungsi rasional di mana merupakan derajat dari pembilangnya dan merupakan derajat dari penyebutnya.
1. Jika , maka sumbu-x, , adalah asimtot datar.
2. Jika , maka asimtot datarnya adalah garis .
3. Jika , maka tidak ada asimtot datar (ada sebuah asimstot miring).
Langkah 6
Temukan dan .
Langkah 7
Karena , tidak ada asimtot datar.
Tidak Ada Asimtot Datar
Langkah 8
Langkah 8.1
Sederhanakan pernyataannya.
Langkah 8.1.1
Sederhanakan pembilangnya.
Langkah 8.1.1.1
Tulis kembali sebagai .
Langkah 8.1.1.2
Karena kedua suku adalah pangkat tiga sempurna, faktorkan menggunakan rumus beda pangkat tiga. di mana dan .
Langkah 8.1.1.3
Sederhanakan.
Langkah 8.1.1.3.1
Kalikan dengan .
Langkah 8.1.1.3.2
Satu dipangkat berapa pun sama dengan satu.
Langkah 8.1.2
Sederhanakan penyebutnya.
Langkah 8.1.2.1
Tulis kembali sebagai .
Langkah 8.1.2.2
Karena kedua suku merupakan kuadrat sempurna, faktorkan menggunakan rumus beda pangkat dua, di mana dan .
Langkah 8.2
Perluas .
Langkah 8.2.1
Terapkan sifat distributif.
Langkah 8.2.2
Terapkan sifat distributif.
Langkah 8.2.3
Terapkan sifat distributif.
Langkah 8.2.4
Terapkan sifat distributif.
Langkah 8.2.5
Terapkan sifat distributif.
Langkah 8.2.6
Susun kembali dan .
Langkah 8.2.7
Naikkan menjadi pangkat .
Langkah 8.2.8
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 8.2.9
Tambahkan dan .
Langkah 8.2.10
Naikkan menjadi pangkat .
Langkah 8.2.11
Naikkan menjadi pangkat .
Langkah 8.2.12
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 8.2.13
Tambahkan dan .
Langkah 8.2.14
Kalikan dengan .
Langkah 8.2.15
Kalikan dengan .
Langkah 8.2.16
Pindahkan .
Langkah 8.2.17
Kurangi dengan .
Langkah 8.2.18
Tambahkan dan .
Langkah 8.2.19
Kurangi dengan .
Langkah 8.2.20
Tambahkan dan .
Langkah 8.3
Perluas .
Langkah 8.3.1
Terapkan sifat distributif.
Langkah 8.3.2
Terapkan sifat distributif.
Langkah 8.3.3
Terapkan sifat distributif.
Langkah 8.3.4
Susun kembali dan .
Langkah 8.3.5
Naikkan menjadi pangkat .
Langkah 8.3.6
Naikkan menjadi pangkat .
Langkah 8.3.7
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 8.3.8
Tambahkan dan .
Langkah 8.3.9
Kalikan dengan .
Langkah 8.3.10
Tambahkan dan .
Langkah 8.3.11
Kurangi dengan .
Langkah 8.4
Tulis polinomial yang akan dibagi. Jika tidak ada suku untuk setiap eksponen, masukan suku dengan nilai .
+ | - | + | + | - |
Langkah 8.5
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
+ | - | + | + | - |
Langkah 8.6
Kalikan suku hasil bagi baru dengan pembagi.
+ | - | + | + | - | |||||||||
+ | + | - |
Langkah 8.7
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
+ | - | + | + | - | |||||||||
- | - | + |
Langkah 8.8
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
+ | - | + | + | - | |||||||||
- | - | + | |||||||||||
+ |
Langkah 8.9
Mengeluarkan suku berikutnya dari bilangan yang dibagi asli ke dalam bilangan yang dibagi saat ini.
+ | - | + | + | - | |||||||||
- | - | + | |||||||||||
+ | - |
Langkah 8.10
Jawaban akhirnya adalah hasil bagi ditambah sisanya per pembagi.
Langkah 8.11
Asimtot miring adalah bagian polinomial dari hasil pembagian panjang.
Langkah 9
Ini adalah himpunan semua asimtot.
Asimtot Tegak:
Tidak Ada Asimtot Datar
Asimtot Miring:
Langkah 10