Masukkan soal...
Pra-Aljabar Contoh
Langkah 1
Tambahkan pada kedua sisi pertidaksamaan tersebut.
Langkah 2
Konversikan pertidaksamaan ke persamaan.
Langkah 3
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 4
Langkah 4.1
Faktorkan menggunakan uji akar rasional.
Langkah 4.1.1
Jika fungsi Polinomial memiliki koefisien bilangan bulat, maka setiap nol rasional akan memiliki bentuk di mana adalah faktor dari konstanta dan adalah faktor dari koefisien pertama.
Langkah 4.1.2
Tentukan setiap gabungan dari . Ini adalah akar yang memungkinkan dari fungsi polinomial.
Langkah 4.1.3
Substitusikan dan sederhanakan pernyataannya. Dalam hal ini, pernyataannya sama dengan sehingga adalah akar dari polinomialnya.
Langkah 4.1.3.1
Substitusikan ke dalam polinomialnya.
Langkah 4.1.3.2
Naikkan menjadi pangkat .
Langkah 4.1.3.3
Naikkan menjadi pangkat .
Langkah 4.1.3.4
Kalikan dengan .
Langkah 4.1.3.5
Tambahkan dan .
Langkah 4.1.3.6
Kalikan dengan .
Langkah 4.1.3.7
Tambahkan dan .
Langkah 4.1.3.8
Kurangi dengan .
Langkah 4.1.4
Karena adalah akar yang telah diketahui, bagi polinomial tersebut dengan untuk mencari polinomial hasil bagi. Polinomial ini kemudian dapat digunakan untuk menemukan akar yang belum diketahui.
Langkah 4.1.5
Bagilah dengan .
Langkah 4.1.5.1
Tulis polinomial yang akan dibagi. Jika tidak ada suku untuk setiap eksponen, masukan suku dengan nilai .
- | + | + | - |
Langkah 4.1.5.2
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
- | + | + | - |
Langkah 4.1.5.3
Kalikan suku hasil bagi baru dengan pembagi.
- | + | + | - | ||||||||
+ | - |
Langkah 4.1.5.4
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
- | + | + | - | ||||||||
- | + |
Langkah 4.1.5.5
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
- | + | + | - | ||||||||
- | + | ||||||||||
+ |
Langkah 4.1.5.6
Mengeluarkan suku-suku berikutnya dari bilangan yang dibagi asli ke dalam bilangan yang dibagi saat ini.
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + |
Langkah 4.1.5.7
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
+ | |||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + |
Langkah 4.1.5.8
Kalikan suku hasil bagi baru dengan pembagi.
+ | |||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | - |
Langkah 4.1.5.9
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
+ | |||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + |
Langkah 4.1.5.10
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
+ | |||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ |
Langkah 4.1.5.11
Mengeluarkan suku-suku berikutnya dari bilangan yang dibagi asli ke dalam bilangan yang dibagi saat ini.
+ | |||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - |
Langkah 4.1.5.12
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
+ | + | ||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - |
Langkah 4.1.5.13
Kalikan suku hasil bagi baru dengan pembagi.
+ | + | ||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - |
Langkah 4.1.5.14
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
+ | + | ||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + |
Langkah 4.1.5.15
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
+ | + | ||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
Langkah 4.1.5.16
Karena sisanya adalah , maka jawaban akhirnya adalah hasil baginya.
Langkah 4.1.6
Tulis sebagai himpunan faktor.
Langkah 4.2
Faktorkan menggunakan metode AC.
Langkah 4.2.1
Faktorkan menggunakan metode AC.
Langkah 4.2.1.1
Mempertimbangkan bentuk . Tentukan pasangan bilangan bulat yang hasil kalinya (Variabel1) dan jumlahnya . Dalam hal ini, hasil kalinya dan jumlahnya .
Langkah 4.2.1.2
Tulis bentuk yang difaktorkan menggunakan bilangan bulat ini.
Langkah 4.2.2
Hilangkan tanda kurung yang tidak perlu.
Langkah 5
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 6
Langkah 6.1
Atur sama dengan .
Langkah 6.2
Tambahkan ke kedua sisi persamaan.
Langkah 7
Langkah 7.1
Atur sama dengan .
Langkah 7.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 8
Langkah 8.1
Atur sama dengan .
Langkah 8.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 9
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 10
Gunakan masing-masing akar untuk membuat interval pengujian.
Langkah 11
Langkah 11.1
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Langkah 11.1.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 11.1.2
Ganti dengan pada pertidaksamaan asal.
Langkah 11.1.3
Sisi kiri lebih kecil dari sisi kanan , yang berarti pernyataan yang diberikan selalu benar.
True
True
Langkah 11.2
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Langkah 11.2.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 11.2.2
Ganti dengan pada pertidaksamaan asal.
Langkah 11.2.3
Sisi kiri tidak lebih kecil dari sisi kanan , yang berarti pernyataan yang diberikan salah.
False
False
Langkah 11.3
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Langkah 11.3.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 11.3.2
Ganti dengan pada pertidaksamaan asal.
Langkah 11.3.3
Sisi kiri lebih kecil dari sisi kanan , yang berarti pernyataan yang diberikan selalu benar.
True
True
Langkah 11.4
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Langkah 11.4.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 11.4.2
Ganti dengan pada pertidaksamaan asal.
Langkah 11.4.3
Sisi kiri tidak lebih kecil dari sisi kanan , yang berarti pernyataan yang diberikan salah.
False
False
Langkah 11.5
Bandingkan interval untuk menentukan mana yang memenuhi pertidaksamaan asal.
Benar
Salah
Benar
Salah
Benar
Salah
Benar
Salah
Langkah 12
Penyelesaian tersebut terdiri dari semua interval hakiki.
atau
Langkah 13