Masukkan soal...
Aljabar Linear Contoh
-21x-2y+z=-76−21x−2y+z=−76 , 12x+y=4612x+y=46 , -24x-2y+z=-88−24x−2y+z=−88
Langkah 1
Tentukan AX=BAX=B dari sistem persamaan tersebut.
[-21-211210-24-21]⋅[xyz]=[-7646-88]⎡⎢⎣−21−211210−24−21⎤⎥⎦⋅⎡⎢⎣xyz⎤⎥⎦=⎡⎢⎣−7646−88⎤⎥⎦
Langkah 2
Langkah 2.1
Find the determinant.
Langkah 2.1.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 22 by its cofactor and add.
Langkah 2.1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
Langkah 2.1.1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
Langkah 2.1.1.3
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|-21-21|∣∣∣−21−21∣∣∣
Langkah 2.1.1.4
Multiply element a21a21 by its cofactor.
-12|-21-21|−12∣∣∣−21−21∣∣∣
Langkah 2.1.1.5
The minor for a22a22 is the determinant with row 22 and column 22 deleted.
|-211-241|∣∣∣−211−241∣∣∣
Langkah 2.1.1.6
Multiply element a22a22 by its cofactor.
1|-211-241|1∣∣∣−211−241∣∣∣
Langkah 2.1.1.7
The minor for a23a23 is the determinant with row 22 and column 33 deleted.
|-21-2-24-2|∣∣∣−21−2−24−2∣∣∣
Langkah 2.1.1.8
Multiply element a23a23 by its cofactor.
0|-21-2-24-2|0∣∣∣−21−2−24−2∣∣∣
Langkah 2.1.1.9
Add the terms together.
-12|-21-21|+1|-211-241|+0|-21-2-24-2|−12∣∣∣−21−21∣∣∣+1∣∣∣−211−241∣∣∣+0∣∣∣−21−2−24−2∣∣∣
-12|-21-21|+1|-211-241|+0|-21-2-24-2|−12∣∣∣−21−21∣∣∣+1∣∣∣−211−241∣∣∣+0∣∣∣−21−2−24−2∣∣∣
Langkah 2.1.2
Kalikan 00 dengan |-21-2-24-2|∣∣∣−21−2−24−2∣∣∣.
-12|-21-21|+1|-211-241|+0−12∣∣∣−21−21∣∣∣+1∣∣∣−211−241∣∣∣+0
Langkah 2.1.3
Evaluasi |-21-21|∣∣∣−21−21∣∣∣.
Langkah 2.1.3.1
Determinan dari matriks 2×22×2 dapat dicari menggunakan rumus |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
-12(-2⋅1-(-2⋅1))+1|-211-241|+0−12(−2⋅1−(−2⋅1))+1∣∣∣−211−241∣∣∣+0
Langkah 2.1.3.2
Sederhanakan determinannya.
Langkah 2.1.3.2.1
Sederhanakan setiap suku.
Langkah 2.1.3.2.1.1
Kalikan -2−2 dengan 11.
-12(-2-(-2⋅1))+1|-211-241|+0−12(−2−(−2⋅1))+1∣∣∣−211−241∣∣∣+0
Langkah 2.1.3.2.1.2
Kalikan -(-2⋅1)−(−2⋅1).
Langkah 2.1.3.2.1.2.1
Kalikan -2−2 dengan 11.
-12(-2--2)+1|-211-241|+0−12(−2−−2)+1∣∣∣−211−241∣∣∣+0
Langkah 2.1.3.2.1.2.2
Kalikan -1−1 dengan -2−2.
-12(-2+2)+1|-211-241|+0−12(−2+2)+1∣∣∣−211−241∣∣∣+0
-12(-2+2)+1|-211-241|+0−12(−2+2)+1∣∣∣−211−241∣∣∣+0
-12(-2+2)+1|-211-241|+0−12(−2+2)+1∣∣∣−211−241∣∣∣+0
Langkah 2.1.3.2.2
Tambahkan -2−2 dan 22.
-12⋅0+1|-211-241|+0−12⋅0+1∣∣∣−211−241∣∣∣+0
-12⋅0+1|-211-241|+0−12⋅0+1∣∣∣−211−241∣∣∣+0
-12⋅0+1|-211-241|+0−12⋅0+1∣∣∣−211−241∣∣∣+0
Langkah 2.1.4
Evaluasi |-211-241|∣∣∣−211−241∣∣∣.
Langkah 2.1.4.1
Determinan dari matriks 2×22×2 dapat dicari menggunakan rumus |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
-12⋅0+1(-21⋅1-(-24⋅1))+0−12⋅0+1(−21⋅1−(−24⋅1))+0
Langkah 2.1.4.2
Sederhanakan determinannya.
Langkah 2.1.4.2.1
Sederhanakan setiap suku.
Langkah 2.1.4.2.1.1
Kalikan -21−21 dengan 11.
-12⋅0+1(-21-(-24⋅1))+0−12⋅0+1(−21−(−24⋅1))+0
Langkah 2.1.4.2.1.2
Kalikan -(-24⋅1)−(−24⋅1).
Langkah 2.1.4.2.1.2.1
Kalikan -24−24 dengan 11.
-12⋅0+1(-21--24)+0−12⋅0+1(−21−−24)+0
Langkah 2.1.4.2.1.2.2
Kalikan -1−1 dengan -24−24.
-12⋅0+1(-21+24)+0−12⋅0+1(−21+24)+0
-12⋅0+1(-21+24)+0−12⋅0+1(−21+24)+0
-12⋅0+1(-21+24)+0−12⋅0+1(−21+24)+0
Langkah 2.1.4.2.2
Tambahkan -21−21 dan 2424.
-12⋅0+1⋅3+0−12⋅0+1⋅3+0
-12⋅0+1⋅3+0−12⋅0+1⋅3+0
-12⋅0+1⋅3+0−12⋅0+1⋅3+0
Langkah 2.1.5
Sederhanakan determinannya.
Langkah 2.1.5.1
Sederhanakan setiap suku.
Langkah 2.1.5.1.1
Kalikan -12−12 dengan 00.
0+1⋅3+00+1⋅3+0
Langkah 2.1.5.1.2
Kalikan 33 dengan 11.
0+3+00+3+0
0+3+00+3+0
Langkah 2.1.5.2
Tambahkan 00 dan 33.
3+03+0
Langkah 2.1.5.3
Tambahkan 33 dan 00.
33
33
33
Langkah 2.2
Since the determinant is non-zero, the inverse exists.
Langkah 2.3
Set up a 3×63×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[-21-211001210010-24-21001]⎡⎢⎣−21−211001210010−24−21001⎤⎥⎦
Langkah 2.4
Tentukan bentuk eselon baris yang dikurangi.
Langkah 2.4.1
Multiply each element of R1R1 by -121−121 to make the entry at 1,11,1 a 11.
Langkah 2.4.1.1
Multiply each element of R1R1 by -121−121 to make the entry at 1,11,1 a 11.
[-121⋅-21-121⋅-2-121⋅1-121⋅1-121⋅0-121⋅01210010-24-21001]⎡⎢
⎢⎣−121⋅−21−121⋅−2−121⋅1−121⋅1−121⋅0−121⋅01210010−24−21001⎤⎥
⎥⎦
Langkah 2.4.1.2
Sederhanakan R1R1.
[1221-121-121001210010-24-21001]⎡⎢
⎢⎣1221−121−121001210010−24−21001⎤⎥
⎥⎦
[1221-121-121001210010-24-21001]⎡⎢
⎢⎣1221−121−121001210010−24−21001⎤⎥
⎥⎦
Langkah 2.4.2
Perform the row operation R2=R2-12R1R2=R2−12R1 to make the entry at 2,12,1 a 00.
Langkah 2.4.2.1
Perform the row operation R2=R2-12R1R2=R2−12R1 to make the entry at 2,12,1 a 00.
[1221-121-1210012-12⋅11-12(221)0-12(-121)0-12(-121)1-12⋅00-12⋅0-24-21001]⎡⎢
⎢⎣1221−121−1210012−12⋅11−12(221)0−12(−121)0−12(−121)1−12⋅00−12⋅0−24−21001⎤⎥
⎥⎦
Langkah 2.4.2.2
Sederhanakan R2R2.
[1221-121-121000-17474710-24-21001]⎡⎢
⎢⎣1221−121−121000−17474710−24−21001⎤⎥
⎥⎦
[1221-121-121000-17474710-24-21001]⎡⎢
⎢⎣1221−121−121000−17474710−24−21001⎤⎥
⎥⎦
Langkah 2.4.3
Perform the row operation R3=R3+24R1R3=R3+24R1 to make the entry at 3,13,1 a 00.
Langkah 2.4.3.1
Perform the row operation R3=R3+24R1R3=R3+24R1 to make the entry at 3,13,1 a 00.
[1221-121-121000-17474710-24+24⋅1-2+24(221)1+24(-121)0+24(-121)0+24⋅01+24⋅0]⎡⎢
⎢
⎢⎣1221−121−121000−17474710−24+24⋅1−2+24(221)1+24(−121)0+24(−121)0+24⋅01+24⋅0⎤⎥
⎥
⎥⎦
Langkah 2.4.3.2
Sederhanakan R3R3.
[1221-121-121000-17474710027-17-8701]⎡⎢
⎢
⎢⎣1221−121−121000−17474710027−17−8701⎤⎥
⎥
⎥⎦
[1221-121-121000-17474710027-17-8701]⎡⎢
⎢
⎢⎣1221−121−121000−17474710027−17−8701⎤⎥
⎥
⎥⎦
Langkah 2.4.4
Multiply each element of R2R2 by -7−7 to make the entry at 2,22,2 a 11.
Langkah 2.4.4.1
Multiply each element of R2R2 by -7−7 to make the entry at 2,22,2 a 11.
[1221-121-12100-7⋅0-7(-17)-7(47)-7(47)-7⋅1-7⋅0027-17-8701]⎡⎢
⎢
⎢
⎢⎣1221−121−12100−7⋅0−7(−17)−7(47)−7(47)−7⋅1−7⋅0027−17−8701⎤⎥
⎥
⎥
⎥⎦
Langkah 2.4.4.2
Sederhanakan R2R2.
[1221-121-1210001-4-4-70027-17-8701]⎡⎢
⎢⎣1221−121−1210001−4−4−70027−17−8701⎤⎥
⎥⎦
[1221-121-1210001-4-4-70027-17-8701]⎡⎢
⎢⎣1221−121−1210001−4−4−70027−17−8701⎤⎥
⎥⎦
Langkah 2.4.5
Perform the row operation R3=R3-27R2R3=R3−27R2 to make the entry at 3,2 a 0.
Langkah 2.4.5.1
Perform the row operation R3=R3-27R2 to make the entry at 3,2 a 0.
[1221-121-1210001-4-4-700-27⋅027-27⋅1-17-27⋅-4-87-27⋅-40-27⋅-71-27⋅0]
Langkah 2.4.5.2
Sederhanakan R3.
[1221-121-1210001-4-4-70001021]
[1221-121-1210001-4-4-70001021]
Langkah 2.4.6
Perform the row operation R2=R2+4R3 to make the entry at 2,3 a 0.
Langkah 2.4.6.1
Perform the row operation R2=R2+4R3 to make the entry at 2,3 a 0.
[1221-121-121000+4⋅01+4⋅0-4+4⋅1-4+4⋅0-7+4⋅20+4⋅1001021]
Langkah 2.4.6.2
Sederhanakan R2.
[1221-121-12100010-414001021]
[1221-121-12100010-414001021]
Langkah 2.4.7
Perform the row operation R1=R1+121R3 to make the entry at 1,3 a 0.
Langkah 2.4.7.1
Perform the row operation R1=R1+121R3 to make the entry at 1,3 a 0.
[1+121⋅0221+121⋅0-121+121⋅1-121+121⋅00+121⋅20+121⋅1010-414001021]
Langkah 2.4.7.2
Sederhanakan R1.
[12210-121221121010-414001021]
[12210-121221121010-414001021]
Langkah 2.4.8
Perform the row operation R1=R1-221R2 to make the entry at 1,2 a 0.
Langkah 2.4.8.1
Perform the row operation R1=R1-221R2 to make the entry at 1,2 a 0.
[1-221⋅0221-221⋅10-221⋅0-121-221⋅-4221-221⋅1121-221⋅4010-414001021]
Langkah 2.4.8.2
Sederhanakan R1.
[100130-13010-414001021]
[100130-13010-414001021]
[100130-13010-414001021]
Langkah 2.5
The right half of the reduced row echelon form is the inverse.
[130-13-414021]
[130-13-414021]
Langkah 3
Kalikan kedua sisi persamaan matriks dengan matriks balikan.
([130-13-414021]⋅[-21-211210-24-21])⋅[xyz]=[130-13-414021]⋅[-7646-88]
Langkah 4
Semua matriks akan selalu bernilai 1 jika dikalikan dengan balikannya. A⋅A-1=1.
[xyz]=[130-13-414021]⋅[-7646-88]
Langkah 5
Langkah 5.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 3×3 and the second matrix is 3×1.
Langkah 5.2
Kalikan setiap baris pada matriks pertama dengan setiap kolom pada matriks kedua.
[13⋅-76+0⋅46-13⋅-88-4⋅-76+1⋅46+4⋅-880⋅-76+2⋅46+1⋅-88]
Langkah 5.3
Sederhanakan setiap elemen dalam matriks dengan mengalikan semua pernyataannya.
[4-24]
[4-24]
Langkah 6
Sederhanakan sisi kiri dan kanan.
[xyz]=[4-24]
Langkah 7
Tentukan penyelesaiannya.
x=4
y=-2
z=4