Aljabar Linear Contoh

Tentukan Nullitasnya [[1,-1,-2],[-1,-1,-3+k]]
[1-1-2-1-1-3+k][112113+k]
Langkah 1
Nullity is the dimension of the null space, which is the same as the number of free variables in the system after row reducing. The free variables are the columns without pivot positions.
Langkah 2
Tentukan bentuk eselon baris yang dikurangi.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Perform the row operation R2=R2+R1R2=R2+R1 to make the entry at 2,12,1 a 00.
Ketuk untuk lebih banyak langkah...
Langkah 2.1.1
Perform the row operation R2=R2+R1R2=R2+R1 to make the entry at 2,12,1 a 00.
[1-1-2-1+11-1-1-3+k-2][1121+11113+k2]
Langkah 2.1.2
Sederhanakan R2R2.
[1-1-20-2k-5][11202k5]
[1-1-20-2k-5][11202k5]
Langkah 2.2
Multiply each element of R2R2 by -1212 to make the entry at 2,22,2 a 11.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Multiply each element of R2R2 by -1212 to make the entry at 2,22,2 a 11.
[1-1-2-120-12-2-12(k-5)][11212012212(k5)]
Langkah 2.2.2
Sederhanakan R2R2.
[1-1-201-k2+52][11201k2+52]
[1-1-201-k2+52][11201k2+52]
Langkah 2.3
Perform the row operation R1=R1+R2R1=R1+R2 to make the entry at 1,21,2 a 00.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Perform the row operation R1=R1+R2R1=R1+R2 to make the entry at 1,21,2 a 00.
[1+0-1+11-2-k2+5201-k2+52][1+01+112k2+5201k2+52]
Langkah 2.3.2
Sederhanakan R1R1.
[10-k2+1201-k2+52][10k2+1201k2+52]
[10-k2+1201-k2+52]
[10-k2+1201-k2+52]
Langkah 3
The pivot positions are the locations with the leading 1 in each row. The pivot columns are the columns that have a pivot position.
Pivot Positions: a11 and a22
Pivot Columns: 1 and 2
Langkah 4
The nullity is the number of columns without a pivot position in the row reduced matrix.
1
 [x2  12  π  xdx ]