Aljabar Linear Contoh

Tentukan Determinan Matriks yang Menghasilkan [[1,2,3],[x,y,z]][[1,x],[2,y],[3,z]]
[123xyz][1x2y3z]
Langkah 1
Kalikan [123xyz][1x2y3z].
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 2×3 and the second matrix is 3×2.
Langkah 1.2
Kalikan setiap baris pada matriks pertama dengan setiap kolom pada matriks kedua.
[11+22+331x+2y+3zx1+y2+z3xx+yy+zz]
Langkah 1.3
Sederhanakan setiap elemen dalam matriks dengan mengalikan semua pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Kalikan x dengan x.
[14x+2y+3zx+2y+3zx2+yy+zz]
Langkah 1.3.2
Kalikan y dengan y.
[14x+2y+3zx+2y+3zx2+y2+zz]
Langkah 1.3.3
Kalikan z dengan z.
[14x+2y+3zx+2y+3zx2+y2+z2]
[14x+2y+3zx+2y+3zx2+y2+z2]
[14x+2y+3zx+2y+3zx2+y2+z2]
Langkah 2
Determinan dari matriks 2×2 dapat dicari menggunakan rumus |abcd|=ad-cb.
14(x2+y2+z2)-(x+2y+3z)(x+2y+3z)
Langkah 3
Sederhanakan determinannya.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 3.1.1
Terapkan sifat distributif.
14x2+14y2+14z2-(x+2y+3z)(x+2y+3z)
Langkah 3.1.2
Terapkan sifat distributif.
14x2+14y2+14z2+(-x-(2y)-(3z))(x+2y+3z)
Langkah 3.1.3
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 3.1.3.1
Kalikan 2 dengan -1.
14x2+14y2+14z2+(-x-2y-(3z))(x+2y+3z)
Langkah 3.1.3.2
Kalikan 3 dengan -1.
14x2+14y2+14z2+(-x-2y-3z)(x+2y+3z)
14x2+14y2+14z2+(-x-2y-3z)(x+2y+3z)
Langkah 3.1.4
Perluas (-x-2y-3z)(x+2y+3z) dengan mengalikan setiap suku dalam pernyataan pertama dengan setiap suku dalam pernyataan kedua.
14x2+14y2+14z2-xx-x(2y)-x(3z)-2yx-2y(2y)-2y(3z)-3zx-3z(2y)-3z(3z)
Langkah 3.1.5
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 3.1.5.1
Kalikan x dengan x dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 3.1.5.1.1
Pindahkan x.
14x2+14y2+14z2-(xx)-x(2y)-x(3z)-2yx-2y(2y)-2y(3z)-3zx-3z(2y)-3z(3z)
Langkah 3.1.5.1.2
Kalikan x dengan x.
14x2+14y2+14z2-x2-x(2y)-x(3z)-2yx-2y(2y)-2y(3z)-3zx-3z(2y)-3z(3z)
14x2+14y2+14z2-x2-x(2y)-x(3z)-2yx-2y(2y)-2y(3z)-3zx-3z(2y)-3z(3z)
Langkah 3.1.5.2
Tulis kembali menggunakan sifat komutatif dari perkalian.
14x2+14y2+14z2-x2-12xy-x(3z)-2yx-2y(2y)-2y(3z)-3zx-3z(2y)-3z(3z)
Langkah 3.1.5.3
Kalikan -1 dengan 2.
14x2+14y2+14z2-x2-2xy-x(3z)-2yx-2y(2y)-2y(3z)-3zx-3z(2y)-3z(3z)
Langkah 3.1.5.4
Tulis kembali menggunakan sifat komutatif dari perkalian.
14x2+14y2+14z2-x2-2xy-13xz-2yx-2y(2y)-2y(3z)-3zx-3z(2y)-3z(3z)
Langkah 3.1.5.5
Kalikan -1 dengan 3.
14x2+14y2+14z2-x2-2xy-3xz-2yx-2y(2y)-2y(3z)-3zx-3z(2y)-3z(3z)
Langkah 3.1.5.6
Tulis kembali menggunakan sifat komutatif dari perkalian.
14x2+14y2+14z2-x2-2xy-3xz-2yx-22yy-2y(3z)-3zx-3z(2y)-3z(3z)
Langkah 3.1.5.7
Kalikan y dengan y dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 3.1.5.7.1
Pindahkan y.
14x2+14y2+14z2-x2-2xy-3xz-2yx-22(yy)-2y(3z)-3zx-3z(2y)-3z(3z)
Langkah 3.1.5.7.2
Kalikan y dengan y.
14x2+14y2+14z2-x2-2xy-3xz-2yx-22y2-2y(3z)-3zx-3z(2y)-3z(3z)
14x2+14y2+14z2-x2-2xy-3xz-2yx-22y2-2y(3z)-3zx-3z(2y)-3z(3z)
Langkah 3.1.5.8
Kalikan -2 dengan 2.
14x2+14y2+14z2-x2-2xy-3xz-2yx-4y2-2y(3z)-3zx-3z(2y)-3z(3z)
Langkah 3.1.5.9
Tulis kembali menggunakan sifat komutatif dari perkalian.
14x2+14y2+14z2-x2-2xy-3xz-2yx-4y2-23yz-3zx-3z(2y)-3z(3z)
Langkah 3.1.5.10
Kalikan -2 dengan 3.
14x2+14y2+14z2-x2-2xy-3xz-2yx-4y2-6yz-3zx-3z(2y)-3z(3z)
Langkah 3.1.5.11
Tulis kembali menggunakan sifat komutatif dari perkalian.
14x2+14y2+14z2-x2-2xy-3xz-2yx-4y2-6yz-3zx-32zy-3z(3z)
Langkah 3.1.5.12
Kalikan -3 dengan 2.
14x2+14y2+14z2-x2-2xy-3xz-2yx-4y2-6yz-3zx-6zy-3z(3z)
Langkah 3.1.5.13
Tulis kembali menggunakan sifat komutatif dari perkalian.
14x2+14y2+14z2-x2-2xy-3xz-2yx-4y2-6yz-3zx-6zy-33zz
Langkah 3.1.5.14
Kalikan z dengan z dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 3.1.5.14.1
Pindahkan z.
14x2+14y2+14z2-x2-2xy-3xz-2yx-4y2-6yz-3zx-6zy-33(zz)
Langkah 3.1.5.14.2
Kalikan z dengan z.
14x2+14y2+14z2-x2-2xy-3xz-2yx-4y2-6yz-3zx-6zy-33z2
14x2+14y2+14z2-x2-2xy-3xz-2yx-4y2-6yz-3zx-6zy-33z2
Langkah 3.1.5.15
Kalikan -3 dengan 3.
14x2+14y2+14z2-x2-2xy-3xz-2yx-4y2-6yz-3zx-6zy-9z2
14x2+14y2+14z2-x2-2xy-3xz-2yx-4y2-6yz-3zx-6zy-9z2
Langkah 3.1.6
Kurangi 2yx dengan -2xy.
Ketuk untuk lebih banyak langkah...
Langkah 3.1.6.1
Pindahkan y.
14x2+14y2+14z2-x2-2xy-2xy-3xz-4y2-6yz-3zx-6zy-9z2
Langkah 3.1.6.2
Kurangi 2xy dengan -2xy.
14x2+14y2+14z2-x2-4xy-3xz-4y2-6yz-3zx-6zy-9z2
14x2+14y2+14z2-x2-4xy-3xz-4y2-6yz-3zx-6zy-9z2
Langkah 3.1.7
Kurangi 3zx dengan -3xz.
Ketuk untuk lebih banyak langkah...
Langkah 3.1.7.1
Pindahkan z.
14x2+14y2+14z2-x2-4xy-4y2-6yz-3xz-3xz-6zy-9z2
Langkah 3.1.7.2
Kurangi 3xz dengan -3xz.
14x2+14y2+14z2-x2-4xy-4y2-6yz-6xz-6zy-9z2
14x2+14y2+14z2-x2-4xy-4y2-6yz-6xz-6zy-9z2
Langkah 3.1.8
Kurangi 6zy dengan -6yz.
Ketuk untuk lebih banyak langkah...
Langkah 3.1.8.1
Pindahkan z.
14x2+14y2+14z2-x2-4xy-4y2-6yz-6yz-6xz-9z2
Langkah 3.1.8.2
Kurangi 6yz dengan -6yz.
14x2+14y2+14z2-x2-4xy-4y2-12yz-6xz-9z2
14x2+14y2+14z2-x2-4xy-4y2-12yz-6xz-9z2
14x2+14y2+14z2-x2-4xy-4y2-12yz-6xz-9z2
Langkah 3.2
Kurangi x2 dengan 14x2.
13x2+14y2+14z2-4xy-4y2-12yz-6xz-9z2
Langkah 3.3
Kurangi 4y2 dengan 14y2.
13x2+10y2+14z2-4xy-12yz-6xz-9z2
Langkah 3.4
Kurangi 9z2 dengan 14z2.
13x2+10y2+5z2-4xy-12yz-6xz
13x2+10y2+5z2-4xy-12yz-6xz
 [x2  12  π  xdx ]