Aljabar Linear Contoh

Cari Vektor Eigen/Ruang Eigen [[1,1],[0,1]]
Langkah 1
Temukan nilai eigennya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Gunakan rumus untuk menentukan persamaan karakteristik .
Langkah 1.2
Matriks satuan atau matriks satuan dengan ordo adalah matriks persegi dengan bilangan satu di diagonal utama dan nol di elemen lainnya.
Langkah 1.3
Substitusikan nilai-nilai yang diketahui ke dalam .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Substitusikan untuk .
Langkah 1.3.2
Substitusikan untuk .
Langkah 1.4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.4.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.4.1.1
Kalikan dengan setiap elemen di dalam matriks tersebut.
Langkah 1.4.1.2
Sederhanakan setiap elemen dalam matriks.
Ketuk untuk lebih banyak langkah...
Langkah 1.4.1.2.1
Kalikan dengan .
Langkah 1.4.1.2.2
Kalikan .
Ketuk untuk lebih banyak langkah...
Langkah 1.4.1.2.2.1
Kalikan dengan .
Langkah 1.4.1.2.2.2
Kalikan dengan .
Langkah 1.4.1.2.3
Kalikan .
Ketuk untuk lebih banyak langkah...
Langkah 1.4.1.2.3.1
Kalikan dengan .
Langkah 1.4.1.2.3.2
Kalikan dengan .
Langkah 1.4.1.2.4
Kalikan dengan .
Langkah 1.4.2
Tambahkan elemen yang seletak.
Langkah 1.4.3
Simplify each element.
Ketuk untuk lebih banyak langkah...
Langkah 1.4.3.1
Tambahkan dan .
Langkah 1.4.3.2
Tambahkan dan .
Langkah 1.5
Find the determinant.
Ketuk untuk lebih banyak langkah...
Langkah 1.5.1
Determinan dari matriks dapat dicari menggunakan rumus .
Langkah 1.5.2
Sederhanakan determinannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.5.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.5.2.1.1
Perluas menggunakan Metode FOIL.
Ketuk untuk lebih banyak langkah...
Langkah 1.5.2.1.1.1
Terapkan sifat distributif.
Langkah 1.5.2.1.1.2
Terapkan sifat distributif.
Langkah 1.5.2.1.1.3
Terapkan sifat distributif.
Langkah 1.5.2.1.2
Sederhanakan dan gabungkan suku-suku sejenis.
Ketuk untuk lebih banyak langkah...
Langkah 1.5.2.1.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.5.2.1.2.1.1
Kalikan dengan .
Langkah 1.5.2.1.2.1.2
Kalikan dengan .
Langkah 1.5.2.1.2.1.3
Kalikan dengan .
Langkah 1.5.2.1.2.1.4
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 1.5.2.1.2.1.5
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 1.5.2.1.2.1.5.1
Pindahkan .
Langkah 1.5.2.1.2.1.5.2
Kalikan dengan .
Langkah 1.5.2.1.2.1.6
Kalikan dengan .
Langkah 1.5.2.1.2.1.7
Kalikan dengan .
Langkah 1.5.2.1.2.2
Kurangi dengan .
Langkah 1.5.2.1.3
Kalikan dengan .
Langkah 1.5.2.2
Tambahkan dan .
Langkah 1.5.2.3
Pindahkan .
Langkah 1.5.2.4
Susun kembali dan .
Langkah 1.6
Atur polinomial karakteristiknya agar sama dengan untuk menemukan nilai eigen .
Langkah 1.7
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 1.7.1
Faktorkan menggunakan aturan kuadrat sempurna.
Ketuk untuk lebih banyak langkah...
Langkah 1.7.1.1
Tulis kembali sebagai .
Langkah 1.7.1.2
Periksa apakah suku tengahnya merupakan dua kali hasil perkalian dari bilangan yang dikuadratkan di suku pertama dan suku ketiga.
Langkah 1.7.1.3
Tulis kembali polinomialnya.
Langkah 1.7.1.4
Faktorkan menggunakan aturan trinomial kuadrat sempurna , di mana dan .
Langkah 1.7.2
Atur agar sama dengan .
Langkah 1.7.3
Tambahkan ke kedua sisi persamaan.
Langkah 2
The eigenvector is equal to the null space of the matrix minus the eigenvalue times the identity matrix where is the null space and is the identity matrix.
Langkah 3
Find the eigenvector using the eigenvalue .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Substitusikan nilai-nilai yang diketahui ke dalam rumusnya.
Langkah 3.2
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Kurangkan elemen yang seletak.
Langkah 3.2.2
Simplify each element.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.2.1
Kurangi dengan .
Langkah 3.2.2.2
Kurangi dengan .
Langkah 3.2.2.3
Kurangi dengan .
Langkah 3.2.2.4
Kurangi dengan .
Langkah 3.3
Find the null space when .
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1
Write as an augmented matrix for .
Langkah 3.3.2
Use the result matrix to declare the final solution to the system of equations.
Langkah 3.3.3
Write a solution vector by solving in terms of the free variables in each row.
Langkah 3.3.4
Write the solution as a linear combination of vectors.
Langkah 3.3.5
Write as a solution set.
Langkah 3.3.6
The solution is the set of vectors created from the free variables of the system.
Langkah 4
The eigenspace of is the list of the vector space for each eigenvalue.