Aljabar Linear Contoh

Tentukan Ruang Nolnya [[1,4,0,3,0],[0,0,1,-3,0],[0,0,0,0,-1]]
[14030001-300000-1]140300013000001
Langkah 1
Write as an augmented matrix for Ax=0Ax=0.
[140300001-3000000-10]⎢ ⎢140300001300000010⎥ ⎥
Langkah 2
Tentukan bentuk eselon baris yang dikurangi.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Multiply each element of R3R3 by -11 to make the entry at 3,53,5 a 11.
Ketuk untuk lebih banyak langkah...
Langkah 2.1.1
Multiply each element of R3R3 by -11 to make the entry at 3,53,5 a 11.
[140300001-300-0-0-0-0--1-0]⎢ ⎢140300001300000010⎥ ⎥
Langkah 2.1.2
Sederhanakan R3R3.
[140300001-300000010]⎢ ⎢140300001300000010⎥ ⎥
[140300001-300000010]⎢ ⎢140300001300000010⎥ ⎥
[140300001-300000010]⎢ ⎢140300001300000010⎥ ⎥
Langkah 3
Use the result matrix to declare the final solution to the system of equations.
x1+4x2+3x4=0x1+4x2+3x4=0
x3-3x4=0x33x4=0
x5=0x5=0
Langkah 4
Write a solution vector by solving in terms of the free variables in each row.
[x1x2x3x4x5]=[-4x2-3x4x23x4x40]⎢ ⎢ ⎢ ⎢ ⎢ ⎢x1x2x3x4x5⎥ ⎥ ⎥ ⎥ ⎥ ⎥=⎢ ⎢ ⎢ ⎢ ⎢ ⎢4x23x4x23x4x40⎥ ⎥ ⎥ ⎥ ⎥ ⎥
Langkah 5
Write the solution as a linear combination of vectors.
[x1x2x3x4x5]=x2[-41000]+x4[-30310]⎢ ⎢ ⎢ ⎢ ⎢ ⎢x1x2x3x4x5⎥ ⎥ ⎥ ⎥ ⎥ ⎥=x2⎢ ⎢ ⎢ ⎢ ⎢ ⎢41000⎥ ⎥ ⎥ ⎥ ⎥ ⎥+x4⎢ ⎢ ⎢ ⎢ ⎢ ⎢30310⎥ ⎥ ⎥ ⎥ ⎥ ⎥
Langkah 6
Write as a solution set.
{x2[-41000]+x4[-30310]|x2,x4R}⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪x2⎢ ⎢ ⎢ ⎢ ⎢ ⎢41000⎥ ⎥ ⎥ ⎥ ⎥ ⎥+x4⎢ ⎢ ⎢ ⎢ ⎢ ⎢30310⎥ ⎥ ⎥ ⎥ ⎥ ⎥∣ ∣ ∣ ∣ ∣ ∣x2,x4R⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪
 [x2  12  π  xdx ]  x2  12  π  xdx