Kalkulus Contoh

Evaluasi Integralnya integral dari 0 ke pi/6 dari cos(2x)^-6sin(2x) terhadap x
Langkah 1
Biarkan . Kemudian sehingga . Tulis kembali menggunakan dan .
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Biarkan . Tentukan .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Diferensialkan .
Langkah 1.1.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.1.2.2
Turunan dari terhadap adalah .
Langkah 1.1.2.3
Ganti semua kemunculan dengan .
Langkah 1.1.3
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.3.2
Kalikan dengan .
Langkah 1.1.3.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.3.4
Kalikan dengan .
Langkah 1.2
Substitusikan batas bawah untuk di .
Langkah 1.3
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Kalikan dengan .
Langkah 1.3.2
Nilai eksak dari adalah .
Langkah 1.4
Substitusikan batas atas untuk di .
Langkah 1.5
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.5.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.5.1.1
Faktorkan dari .
Langkah 1.5.1.2
Batalkan faktor persekutuan.
Langkah 1.5.1.3
Tulis kembali pernyataannya.
Langkah 1.5.2
Nilai eksak dari adalah .
Langkah 1.6
Nilai-nilai yang ditemukan untuk dan akan digunakan untuk mengevaluasi integral tentunya.
Langkah 1.7
Tulis kembali soalnya menggunakan , , dan batas integral yang baru.
Langkah 2
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Pindahkan tanda negatif di depan pecahan.
Langkah 2.2
Gabungkan dan .
Langkah 2.3
Pindahkan menjadi penyebut menggunakan aturan eksponen negatif .
Langkah 3
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 4
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 5
Terapkan aturan-aturan dasar eksponen.
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Pindahkan dari penyebut dengan menaikkannya menjadi pangkat .
Langkah 5.2
Kalikan eksponen dalam .
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 5.2.2
Kalikan dengan .
Langkah 6
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 7
Substitusikan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Evaluasi pada dan pada .
Langkah 7.2
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.1
Mengubah tanda eksponen dengan menulis kembali bilangan pokok sebagai kebalikannya.
Langkah 7.2.2
Naikkan menjadi pangkat .
Langkah 7.2.3
Kalikan dengan .
Langkah 7.2.4
Gabungkan dan .
Langkah 7.2.5
Pindahkan tanda negatif di depan pecahan.
Langkah 7.2.6
Satu dipangkat berapa pun sama dengan satu.
Langkah 7.2.7
Kalikan dengan .
Langkah 7.2.8
Gabungkan pembilang dari penyebut persekutuan.
Langkah 7.2.9
Tambahkan dan .
Langkah 7.2.10
Pindahkan tanda negatif di depan pecahan.
Langkah 7.2.11
Kalikan dengan .
Langkah 7.2.12
Kalikan dengan .
Langkah 7.2.13
Kalikan dengan .
Langkah 7.2.14
Kalikan dengan .
Langkah 8
Hasilnya dapat ditampilkan dalam beberapa bentuk.
Bentuk Eksak:
Bentuk Desimal:
Bentuk Bilangan Campuran: