Kalkulus Contoh

Evaluasi Integralnya integral dari 0 ke 1 dari (6t)/(t^2+1) terhadap t
Langkah 1
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2
Biarkan . Kemudian sehingga . Tulis kembali menggunakan dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Biarkan . Tentukan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1.1
Diferensialkan .
Langkah 2.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 2.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.1.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.1.5
Tambahkan dan .
Langkah 2.2
Substitusikan batas bawah untuk di .
Langkah 2.3
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 2.3.2
Tambahkan dan .
Langkah 2.4
Substitusikan batas atas untuk di .
Langkah 2.5
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.5.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 2.5.2
Tambahkan dan .
Langkah 2.6
Nilai-nilai yang ditemukan untuk dan akan digunakan untuk mengevaluasi integral tentunya.
Langkah 2.7
Tulis kembali soalnya menggunakan , , dan batas integral yang baru.
Langkah 3
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Kalikan dengan .
Langkah 3.2
Pindahkan ke sebelah kiri .
Langkah 4
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 5
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Gabungkan dan .
Langkah 5.2
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1
Faktorkan dari .
Langkah 5.2.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.2.1
Faktorkan dari .
Langkah 5.2.2.2
Batalkan faktor persekutuan.
Langkah 5.2.2.3
Tulis kembali pernyataannya.
Langkah 5.2.2.4
Bagilah dengan .
Langkah 6
Integral dari terhadap adalah .
Langkah 7
Evaluasi pada dan pada .
Langkah 8
Gunakan sifat hasil bagi dari logaritma, .
Langkah 9
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 9.1
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 9.2
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 9.3
Bagilah dengan .
Langkah 10
Hasilnya dapat ditampilkan dalam beberapa bentuk.
Bentuk Eksak:
Bentuk Desimal:
Langkah 11