Kalkulus Contoh

Evaluasi Integralnya integral dari 0 sampai 4 dari akar kuadrat dari 25-y^2 terhadap y
Langkah 1
Biarkan , di mana . Kemudian . Perhatikan bahwa karena , positif.
Langkah 2
Sederhanakan suku-suku.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 2.1.1.1
Terapkan kaidah hasil kali ke .
Langkah 2.1.1.2
Naikkan menjadi pangkat .
Langkah 2.1.1.3
Kalikan dengan .
Langkah 2.1.2
Faktorkan dari .
Langkah 2.1.3
Faktorkan dari .
Langkah 2.1.4
Faktorkan dari .
Langkah 2.1.5
Terapkan identitas pythagoras.
Langkah 2.1.6
Tulis kembali sebagai .
Langkah 2.1.7
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 2.2
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Kalikan dengan .
Langkah 2.2.2
Naikkan menjadi pangkat .
Langkah 2.2.3
Naikkan menjadi pangkat .
Langkah 2.2.4
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.2.5
Tambahkan dan .
Langkah 3
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 4
Gunakan rumus setengah sudut untuk menuliskan kembali sebagai .
Langkah 5
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 6
Gabungkan dan .
Langkah 7
Bagi integral tunggal menjadi beberapa integral.
Langkah 8
Terapkan aturan konstanta.
Langkah 9
Biarkan . Kemudian sehingga . Tulis kembali menggunakan dan .
Ketuk untuk lebih banyak langkah...
Langkah 9.1
Biarkan . Tentukan .
Ketuk untuk lebih banyak langkah...
Langkah 9.1.1
Diferensialkan .
Langkah 9.1.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 9.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 9.1.4
Kalikan dengan .
Langkah 9.2
Substitusikan batas bawah untuk di .
Langkah 9.3
Kalikan dengan .
Langkah 9.4
Substitusikan batas atas untuk di .
Langkah 9.5
Kalikan dengan .
Langkah 9.6
Nilai-nilai yang ditemukan untuk dan akan digunakan untuk mengevaluasi integral tentunya.
Langkah 9.7
Tulis kembali soalnya menggunakan , , dan batas integral yang baru.
Langkah 10
Gabungkan dan .
Langkah 11
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 12
Integral dari terhadap adalah .
Langkah 13
Substitusikan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 13.1
Evaluasi pada dan pada .
Langkah 13.2
Evaluasi pada dan pada .
Langkah 13.3
Tambahkan dan .
Langkah 14
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 14.1
Nilai eksak dari adalah .
Langkah 14.2
Kalikan dengan .
Langkah 14.3
Tambahkan dan .
Langkah 14.4
Gabungkan dan .
Langkah 14.5
Tambahkan dan .
Langkah 14.6
Gabungkan dan .
Langkah 14.7
Kalikan dengan .
Langkah 15
Bagilah dengan .
Langkah 16