Kalkulus Contoh

Evaluasi Integralnya integral dari 1 ke 2 dari (6x-1)/(3x^2-x) terhadap x
Langkah 1
Biarkan . Kemudian sehingga . Tulis kembali menggunakan dan .
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Biarkan . Tentukan .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Diferensialkan .
Langkah 1.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 1.1.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.3.3
Kalikan dengan .
Langkah 1.1.4
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.4.3
Kalikan dengan .
Langkah 1.2
Substitusikan batas bawah untuk di .
Langkah 1.3
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 1.3.1.2
Kalikan dengan .
Langkah 1.3.1.3
Kalikan dengan .
Langkah 1.3.2
Kurangi dengan .
Langkah 1.4
Substitusikan batas atas untuk di .
Langkah 1.5
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.5.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.5.1.1
Naikkan menjadi pangkat .
Langkah 1.5.1.2
Kalikan dengan .
Langkah 1.5.1.3
Kalikan dengan .
Langkah 1.5.2
Kurangi dengan .
Langkah 1.6
Nilai-nilai yang ditemukan untuk dan akan digunakan untuk mengevaluasi integral tentunya.
Langkah 1.7
Tulis kembali soalnya menggunakan , , dan batas integral yang baru.
Langkah 2
Integral dari terhadap adalah .
Langkah 3
Evaluasi pada dan pada .
Langkah 4
Gunakan sifat hasil bagi dari logaritma, .
Langkah 5
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 5.2
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 5.3
Bagilah dengan .
Langkah 6
Hasilnya dapat ditampilkan dalam beberapa bentuk.
Bentuk Eksak:
Bentuk Desimal:
Langkah 7