Masukkan soal...
Kalkulus Contoh
Langkah 1
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2
Langkah 2.1
Tulis polinomial yang akan dibagi. Jika tidak ada suku untuk setiap eksponen, masukan suku dengan nilai .
- | + |
Langkah 2.2
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
- | + |
Langkah 2.3
Kalikan suku hasil bagi baru dengan pembagi.
- | + | ||||||
+ | - |
Langkah 2.4
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
- | + | ||||||
- | + |
Langkah 2.5
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
- | + | ||||||
- | + | ||||||
+ |
Langkah 2.6
Jawaban akhirnya adalah hasil bagi ditambah sisanya per pembagi.
Langkah 3
Bagi integral tunggal menjadi beberapa integral.
Langkah 4
Terapkan aturan konstanta.
Langkah 5
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 6
Langkah 6.1
Biarkan . Tentukan .
Langkah 6.1.1
Diferensialkan .
Langkah 6.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 6.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 6.1.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 6.1.5
Tambahkan dan .
Langkah 6.2
Tulis kembali soalnya menggunakan dan .
Langkah 7
Integral dari terhadap adalah .
Langkah 8
Sederhanakan.
Langkah 9
Ganti semua kemunculan dengan .