Kalkulus Contoh

Evaluasi Integralnya integral dari x/(2x-1) terhadap x
Langkah 1
Bagilah dengan .
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Tulis polinomial yang akan dibagi. Jika tidak ada suku untuk setiap eksponen, masukan suku dengan nilai .
-+
Langkah 1.2
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
-+
Langkah 1.3
Kalikan suku hasil bagi baru dengan pembagi.
-+
+-
Langkah 1.4
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
-+
-+
Langkah 1.5
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
-+
-+
+
Langkah 1.6
Jawaban akhirnya adalah hasil bagi ditambah sisanya per pembagi.
Langkah 2
Bagi integral tunggal menjadi beberapa integral.
Langkah 3
Terapkan aturan konstanta.
Langkah 4
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 5
Biarkan . Kemudian sehingga . Tulis kembali menggunakan dan .
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Biarkan . Tentukan .
Ketuk untuk lebih banyak langkah...
Langkah 5.1.1
Diferensialkan .
Langkah 5.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 5.1.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 5.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 5.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 5.1.3.3
Kalikan dengan .
Langkah 5.1.4
Diferensialkan menggunakan Aturan Konstanta.
Ketuk untuk lebih banyak langkah...
Langkah 5.1.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 5.1.4.2
Tambahkan dan .
Langkah 5.2
Tulis kembali soalnya menggunakan dan .
Langkah 6
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Kalikan dengan .
Langkah 6.2
Pindahkan ke sebelah kiri .
Langkah 7
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 8
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Kalikan dengan .
Langkah 8.2
Kalikan dengan .
Langkah 9
Integral dari terhadap adalah .
Langkah 10
Sederhanakan.
Langkah 11
Ganti semua kemunculan dengan .