Kalkulus Contoh

Tentukan Kecekungannya f(x)=1/(x^4)
Langkah 1
Find the values where the second derivative is equal to .
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Tentukan turunan keduanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1.1
Terapkan aturan-aturan dasar eksponen.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1.1.1
Tulis kembali sebagai .
Langkah 1.1.1.1.2
Kalikan eksponen dalam .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1.1.2.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 1.1.1.1.2.2
Kalikan dengan .
Langkah 1.1.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.1.3
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1.3.1
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 1.1.1.3.2
Gabungkan suku-sukunya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1.3.2.1
Gabungkan dan .
Langkah 1.1.1.3.2.2
Pindahkan tanda negatif di depan pecahan.
Langkah 1.1.2
Tentukan turunan keduanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.2.2
Terapkan aturan-aturan dasar eksponen.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.2.1
Tulis kembali sebagai .
Langkah 1.1.2.2.2
Kalikan eksponen dalam .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.2.2.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 1.1.2.2.2.2
Kalikan dengan .
Langkah 1.1.2.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2.4
Kalikan dengan .
Langkah 1.1.2.5
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.5.1
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 1.1.2.5.2
Gabungkan dan .
Langkah 1.1.3
Turunan kedua dari terhadap adalah .
Langkah 1.2
Atur turunan keduanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Atur turunan keduanya sama dengan .
Langkah 1.2.2
Atur agar pembilangnya sama dengan nol.
Langkah 1.2.3
Karena , tidak ada penyelesaian.
Tidak ada penyelesaian
Tidak ada penyelesaian
Tidak ada penyelesaian
Langkah 2
Tentukan domain dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Atur penyebut dalam agar sama dengan untuk menentukan di mana pernyataannya tidak terdefinisi.
Langkah 2.2
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 2.2.2
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.2.1
Tulis kembali sebagai .
Langkah 2.2.2.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 2.2.2.3
Tambah atau kurang adalah .
Langkah 2.3
Domain adalah semua nilai dari yang membuat pernyataan tersebut terdefinisi.
Notasi Interval:
Notasi Pembuat Himpunan:
Notasi Interval:
Notasi Pembuat Himpunan:
Langkah 3
Buat interval di sekitar nilai saat turunan keduanya bernilai nol atau tak hingga.
Langkah 4
Substitusikan sebarang bilangan dari interval ke dalam turunan keduanya, lalu evaluasi untuk menentukan kecekungan.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 4.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1
Naikkan menjadi pangkat .
Langkah 4.2.2
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.2.1
Faktorkan dari .
Langkah 4.2.2.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.2.2.1
Faktorkan dari .
Langkah 4.2.2.2.2
Batalkan faktor persekutuan.
Langkah 4.2.2.2.3
Tulis kembali pernyataannya.
Langkah 4.2.3
Jawaban akhirnya adalah .
Langkah 4.3
Grafiknya cekung ke atas pada interval karena positif.
Cekung ke atas pada karena positif
Cekung ke atas pada karena positif
Langkah 5
Substitusikan sebarang bilangan dari interval ke dalam turunan keduanya, lalu evaluasi untuk menentukan kecekungan.
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 5.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1
Naikkan menjadi pangkat .
Langkah 5.2.2
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 5.2.2.1
Faktorkan dari .
Langkah 5.2.2.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.2.2.1
Faktorkan dari .
Langkah 5.2.2.2.2
Batalkan faktor persekutuan.
Langkah 5.2.2.2.3
Tulis kembali pernyataannya.
Langkah 5.2.3
Jawaban akhirnya adalah .
Langkah 5.3
Grafiknya cekung ke atas pada interval karena positif.
Cekung ke atas pada karena positif
Cekung ke atas pada karena positif
Langkah 6
Grafiknya cekung ke bawah ketika turunan keduanya negatif dan cekung ke atas ketika turunan keduanya positif.
Cekung ke atas pada karena positif
Cekung ke atas pada karena positif
Langkah 7