Masukkan soal...
Kalkulus Contoh
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Langkah 2.1
Tentukan turunan pertamanya.
Langkah 2.1.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 2.1.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.1.1.2
Turunan dari terhadap adalah .
Langkah 2.1.1.3
Ganti semua kemunculan dengan .
Langkah 2.1.2
Diferensialkan.
Langkah 2.1.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 2.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.1.2.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.1.2.4
Gabungkan pecahan.
Langkah 2.1.2.4.1
Tambahkan dan .
Langkah 2.1.2.4.2
Gabungkan dan .
Langkah 2.1.2.4.3
Gabungkan dan .
Langkah 2.2
Tentukan turunan keduanya.
Langkah 2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.2
Diferensialkan menggunakan Kaidah Hasil Bagi yang menyatakan bahwa adalah di mana dan .
Langkah 2.2.3
Diferensialkan.
Langkah 2.2.3.1
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.3.2
Kalikan dengan .
Langkah 2.2.3.3
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 2.2.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.3.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.3.6
Sederhanakan pernyataannya.
Langkah 2.2.3.6.1
Tambahkan dan .
Langkah 2.2.3.6.2
Kalikan dengan .
Langkah 2.2.4
Naikkan menjadi pangkat .
Langkah 2.2.5
Naikkan menjadi pangkat .
Langkah 2.2.6
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.2.7
Tambahkan dan .
Langkah 2.2.8
Kurangi dengan .
Langkah 2.2.9
Gabungkan dan .
Langkah 2.2.10
Sederhanakan.
Langkah 2.2.10.1
Terapkan sifat distributif.
Langkah 2.2.10.2
Sederhanakan setiap suku.
Langkah 2.2.10.2.1
Kalikan dengan .
Langkah 2.2.10.2.2
Kalikan dengan .
Langkah 2.3
Turunan kedua dari terhadap adalah .
Langkah 3
Langkah 3.1
Atur turunan keduanya sama dengan .
Langkah 3.2
Atur agar pembilangnya sama dengan nol.
Langkah 3.3
Selesaikan persamaan untuk .
Langkah 3.3.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 3.3.2
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 3.3.2.1
Bagilah setiap suku di dengan .
Langkah 3.3.2.2
Sederhanakan sisi kirinya.
Langkah 3.3.2.2.1
Batalkan faktor persekutuan dari .
Langkah 3.3.2.2.1.1
Batalkan faktor persekutuan.
Langkah 3.3.2.2.1.2
Bagilah dengan .
Langkah 3.3.2.3
Sederhanakan sisi kanannya.
Langkah 3.3.2.3.1
Bagilah dengan .
Langkah 3.3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Langkah 3.3.4
Sebarang akar dari adalah .
Langkah 3.3.5
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 3.3.5.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 3.3.5.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 3.3.5.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 4
Langkah 4.1
Substitusikan dalam untuk menemukan nilai dari .
Langkah 4.1.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 4.1.2
Sederhanakan hasilnya.
Langkah 4.1.2.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 4.1.2.2
Tambahkan dan .
Langkah 4.1.2.3
Jawaban akhirnya adalah .
Langkah 4.2
Titiknya yang ditemukan dengan mensubsitusi dalam adalah . Titik ini dapat menjadi titik belok.
Langkah 4.3
Substitusikan dalam untuk menemukan nilai dari .
Langkah 4.3.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 4.3.2
Sederhanakan hasilnya.
Langkah 4.3.2.1
Naikkan menjadi pangkat .
Langkah 4.3.2.2
Tambahkan dan .
Langkah 4.3.2.3
Jawaban akhirnya adalah .
Langkah 4.4
Titiknya yang ditemukan dengan mensubsitusi dalam adalah . Titik ini dapat menjadi titik belok.
Langkah 4.5
Tentukan titik-titik yang dapat menjadi titik belok.
Langkah 5
Pisahkan menjadi interval di sekitar titik-titik yang dapat berpotensi menjadi titik-titik belok.
Langkah 6
Langkah 6.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 6.2
Sederhanakan hasilnya.
Langkah 6.2.1
Sederhanakan pembilangnya.
Langkah 6.2.1.1
Naikkan menjadi pangkat .
Langkah 6.2.1.2
Kalikan dengan .
Langkah 6.2.1.3
Tambahkan dan .
Langkah 6.2.2
Sederhanakan penyebutnya.
Langkah 6.2.2.1
Naikkan menjadi pangkat .
Langkah 6.2.2.2
Tambahkan dan .
Langkah 6.2.2.3
Naikkan menjadi pangkat .
Langkah 6.2.3
Bagilah dengan .
Langkah 6.2.4
Jawaban akhirnya adalah .
Langkah 6.3
Pada , turunan kedua adalah . Karena ini negatif, turunan kedua menurun pada interval
Menurun pada karena
Menurun pada karena
Langkah 7
Langkah 7.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 7.2
Sederhanakan hasilnya.
Langkah 7.2.1
Sederhanakan pembilangnya.
Langkah 7.2.1.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 7.2.1.2
Kalikan dengan .
Langkah 7.2.1.3
Tambahkan dan .
Langkah 7.2.2
Sederhanakan penyebutnya.
Langkah 7.2.2.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 7.2.2.2
Tambahkan dan .
Langkah 7.2.2.3
Satu dipangkat berapa pun sama dengan satu.
Langkah 7.2.3
Bagilah dengan .
Langkah 7.2.4
Jawaban akhirnya adalah .
Langkah 7.3
Pada , turunan keduanya adalah . Karena ini positif, turunan keduanya meningkat pada interval .
Meningkat pada karena
Meningkat pada karena
Langkah 8
Langkah 8.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 8.2
Sederhanakan hasilnya.
Langkah 8.2.1
Sederhanakan pembilangnya.
Langkah 8.2.1.1
Naikkan menjadi pangkat .
Langkah 8.2.1.2
Kalikan dengan .
Langkah 8.2.1.3
Tambahkan dan .
Langkah 8.2.2
Sederhanakan penyebutnya.
Langkah 8.2.2.1
Naikkan menjadi pangkat .
Langkah 8.2.2.2
Tambahkan dan .
Langkah 8.2.2.3
Naikkan menjadi pangkat .
Langkah 8.2.3
Bagilah dengan .
Langkah 8.2.4
Jawaban akhirnya adalah .
Langkah 8.3
Pada , turunan kedua adalah . Karena ini negatif, turunan kedua menurun pada interval
Menurun pada karena
Menurun pada karena
Langkah 9
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection points in this case are .
Langkah 10