Masukkan soal...
Kalkulus Contoh
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Langkah 2.1
Tentukan turunan keduanya.
Langkah 2.1.1
Tentukan turunan pertamanya.
Langkah 2.1.1.1
Diferensialkan menggunakan Kaidah Hasil Bagi yang menyatakan bahwa adalah di mana dan .
Langkah 2.1.1.2
Diferensialkan.
Langkah 2.1.1.2.1
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.1.1.2.2
Kalikan dengan .
Langkah 2.1.1.2.3
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.1.1.2.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.1.1.2.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.1.1.2.6
Sederhanakan dengan menambahkan suku-suku.
Langkah 2.1.1.2.6.1
Tambahkan dan .
Langkah 2.1.1.2.6.2
Kalikan dengan .
Langkah 2.1.1.2.6.3
Kurangi dengan .
Langkah 2.1.1.2.6.4
Tambahkan dan .
Langkah 2.1.2
Tentukan turunan keduanya.
Langkah 2.1.2.1
Terapkan aturan-aturan dasar eksponen.
Langkah 2.1.2.1.1
Tulis kembali sebagai .
Langkah 2.1.2.1.2
Kalikan eksponen dalam .
Langkah 2.1.2.1.2.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 2.1.2.1.2.2
Kalikan dengan .
Langkah 2.1.2.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 2.1.2.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.1.2.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.1.2.2.3
Ganti semua kemunculan dengan .
Langkah 2.1.2.3
Diferensialkan.
Langkah 2.1.2.3.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.1.2.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.1.2.3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.1.2.3.4
Sederhanakan pernyataannya.
Langkah 2.1.2.3.4.1
Tambahkan dan .
Langkah 2.1.2.3.4.2
Kalikan dengan .
Langkah 2.1.2.4
Sederhanakan.
Langkah 2.1.2.4.1
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 2.1.2.4.2
Gabungkan suku-sukunya.
Langkah 2.1.2.4.2.1
Gabungkan dan .
Langkah 2.1.2.4.2.2
Pindahkan tanda negatif di depan pecahan.
Langkah 2.1.3
Turunan kedua dari terhadap adalah .
Langkah 2.2
Atur turunan keduanya agar sama dengan dan selesaikan persamaan .
Langkah 2.2.1
Atur turunan keduanya sama dengan .
Langkah 2.2.2
Atur agar pembilangnya sama dengan nol.
Langkah 2.2.3
Karena , tidak ada penyelesaian.
Tidak ada penyelesaian
Tidak ada penyelesaian
Tidak ada penyelesaian
Langkah 3
Langkah 3.1
Atur penyebut dalam agar sama dengan untuk menentukan di mana pernyataannya tidak terdefinisi.
Langkah 3.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 3.3
Domain adalah semua nilai dari yang membuat pernyataan tersebut terdefinisi.
Notasi Interval:
Notasi Pembuat Himpunan:
Notasi Interval:
Notasi Pembuat Himpunan:
Langkah 4
Buat interval di sekitar nilai saat turunan keduanya bernilai nol atau tak hingga.
Langkah 5
Langkah 5.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 5.2
Sederhanakan hasilnya.
Langkah 5.2.1
Sederhanakan penyebutnya.
Langkah 5.2.1.1
Tambahkan dan .
Langkah 5.2.1.2
Naikkan menjadi pangkat .
Langkah 5.2.2
Pindahkan tanda negatif di depan pecahan.
Langkah 5.2.3
Jawaban akhirnya adalah .
Langkah 5.3
Grafiknya cekung ke atas pada interval karena positif.
Cekung ke atas pada karena positif
Cekung ke atas pada karena positif
Langkah 6
Langkah 6.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 6.2
Sederhanakan hasilnya.
Langkah 6.2.1
Sederhanakan penyebutnya.
Langkah 6.2.1.1
Tambahkan dan .
Langkah 6.2.1.2
Satu dipangkat berapa pun sama dengan satu.
Langkah 6.2.2
Sederhanakan pernyataannya.
Langkah 6.2.2.1
Bagilah dengan .
Langkah 6.2.2.2
Kalikan dengan .
Langkah 6.2.3
Jawaban akhirnya adalah .
Langkah 6.3
Grafiknya cekung ke bawah pada interval karena negatif.
Cekung ke bawah pada karena negatif
Cekung ke bawah pada karena negatif
Langkah 7
Grafiknya cekung ke bawah ketika turunan keduanya negatif dan cekung ke atas ketika turunan keduanya positif.
Cekung ke atas pada karena positif
Cekung ke bawah pada karena negatif
Langkah 8