Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Tentukan turunan keduanya.
Langkah 1.1.1
Tentukan turunan pertamanya.
Langkah 1.1.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 1.1.1.2
Evaluasi .
Langkah 1.1.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.1.2.3
Kalikan dengan .
Langkah 1.1.1.3
Evaluasi .
Langkah 1.1.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.1.3.3
Kalikan dengan .
Langkah 1.1.1.4
Evaluasi .
Langkah 1.1.1.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.1.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.1.4.3
Kalikan dengan .
Langkah 1.1.1.5
Diferensialkan menggunakan Aturan Konstanta.
Langkah 1.1.1.5.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.1.5.2
Tambahkan dan .
Langkah 1.1.2
Tentukan turunan keduanya.
Langkah 1.1.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 1.1.2.2
Evaluasi .
Langkah 1.1.2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.2.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2.2.3
Kalikan dengan .
Langkah 1.1.2.3
Evaluasi .
Langkah 1.1.2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.2.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2.3.3
Kalikan dengan .
Langkah 1.1.2.4
Evaluasi .
Langkah 1.1.2.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.2.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2.4.3
Kalikan dengan .
Langkah 1.1.3
Turunan kedua dari terhadap adalah .
Langkah 1.2
Atur turunan keduanya agar sama dengan dan selesaikan persamaan .
Langkah 1.2.1
Atur turunan keduanya sama dengan .
Langkah 1.2.2
Faktorkan sisi kiri persamaannya.
Langkah 1.2.2.1
Faktorkan dari .
Langkah 1.2.2.1.1
Faktorkan dari .
Langkah 1.2.2.1.2
Faktorkan dari .
Langkah 1.2.2.1.3
Faktorkan dari .
Langkah 1.2.2.1.4
Faktorkan dari .
Langkah 1.2.2.1.5
Faktorkan dari .
Langkah 1.2.2.2
Faktorkan.
Langkah 1.2.2.2.1
Faktorkan dengan pengelompokan.
Langkah 1.2.2.2.1.1
Untuk polinomial dari bentuk , tulis kembali suku tengahnya sebagai penjumlahan dari dua suku yang hasil kalinya adalah dan yang jumlahnya adalah .
Langkah 1.2.2.2.1.1.1
Faktorkan dari .
Langkah 1.2.2.2.1.1.2
Tulis kembali sebagai ditambah
Langkah 1.2.2.2.1.1.3
Terapkan sifat distributif.
Langkah 1.2.2.2.1.2
Faktorkan faktor persekutuan terbesar dari setiap kelompok.
Langkah 1.2.2.2.1.2.1
Kelompokkan dua suku pertama dan dua suku terakhir.
Langkah 1.2.2.2.1.2.2
Faktorkan faktor persekutuan terbesar (FPB) dari setiap kelompok.
Langkah 1.2.2.2.1.3
Faktorkan polinomial dengan memfaktorkan faktor persekutuan terbesar, .
Langkah 1.2.2.2.2
Hilangkan tanda kurung yang tidak perlu.
Langkah 1.2.3
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 1.2.4
Atur agar sama dengan dan selesaikan .
Langkah 1.2.4.1
Atur sama dengan .
Langkah 1.2.4.2
Selesaikan untuk .
Langkah 1.2.4.2.1
Tambahkan ke kedua sisi persamaan.
Langkah 1.2.4.2.2
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 1.2.4.2.2.1
Bagilah setiap suku di dengan .
Langkah 1.2.4.2.2.2
Sederhanakan sisi kirinya.
Langkah 1.2.4.2.2.2.1
Batalkan faktor persekutuan dari .
Langkah 1.2.4.2.2.2.1.1
Batalkan faktor persekutuan.
Langkah 1.2.4.2.2.2.1.2
Bagilah dengan .
Langkah 1.2.5
Atur agar sama dengan dan selesaikan .
Langkah 1.2.5.1
Atur sama dengan .
Langkah 1.2.5.2
Tambahkan ke kedua sisi persamaan.
Langkah 1.2.6
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 2
Domain dari pernyataan adalah semua bilangan riil, kecuali di mana pernyataannya tidak terdefinisi. Dalam hal ini, tidak ada bilangan riil yang membuat pernyataannya tidak terdefinisi.
Notasi Interval:
Notasi Pembuat Himpunan:
Langkah 3
Buat interval di sekitar nilai saat turunan keduanya bernilai nol atau tak hingga.
Langkah 4
Langkah 4.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 4.2
Sederhanakan hasilnya.
Langkah 4.2.1
Sederhanakan setiap suku.
Langkah 4.2.1.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 4.2.1.2
Kalikan dengan .
Langkah 4.2.1.3
Kalikan dengan .
Langkah 4.2.2
Sederhanakan dengan menambahkan bilangan.
Langkah 4.2.2.1
Tambahkan dan .
Langkah 4.2.2.2
Tambahkan dan .
Langkah 4.2.3
Jawaban akhirnya adalah .
Langkah 4.3
Grafiknya cekung ke atas pada interval karena positif.
Cekung ke atas pada karena positif
Cekung ke atas pada karena positif
Langkah 5
Langkah 5.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 5.2
Sederhanakan hasilnya.
Langkah 5.2.1
Sederhanakan setiap suku.
Langkah 5.2.1.1
Naikkan menjadi pangkat .
Langkah 5.2.1.2
Kalikan dengan .
Langkah 5.2.1.3
Kalikan dengan .
Langkah 5.2.2
Sederhanakan dengan menambahkan dan mengurangkan.
Langkah 5.2.2.1
Kurangi dengan .
Langkah 5.2.2.2
Tambahkan dan .
Langkah 5.2.3
Jawaban akhirnya adalah .
Langkah 5.3
Grafiknya cekung ke bawah pada interval karena negatif.
Cekung ke bawah pada karena negatif
Cekung ke bawah pada karena negatif
Langkah 6
Langkah 6.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 6.2
Sederhanakan hasilnya.
Langkah 6.2.1
Sederhanakan setiap suku.
Langkah 6.2.1.1
Naikkan menjadi pangkat .
Langkah 6.2.1.2
Kalikan dengan .
Langkah 6.2.1.3
Kalikan dengan .
Langkah 6.2.2
Sederhanakan dengan menambahkan dan mengurangkan.
Langkah 6.2.2.1
Kurangi dengan .
Langkah 6.2.2.2
Tambahkan dan .
Langkah 6.2.3
Jawaban akhirnya adalah .
Langkah 6.3
Grafiknya cekung ke atas pada interval karena positif.
Cekung ke atas pada karena positif
Cekung ke atas pada karena positif
Langkah 7
Grafiknya cekung ke bawah ketika turunan keduanya negatif dan cekung ke atas ketika turunan keduanya positif.
Cekung ke atas pada karena positif
Cekung ke bawah pada karena negatif
Cekung ke atas pada karena positif
Langkah 8