Masukkan soal...
Kalkulus Contoh
,
Langkah 1
Jika kontinu pada interval dan terdiferensialkan pada , maka setidaknya satu bilangan riil ada dalam interval sedemikian rupa sehingga . Teorema nilai rata-ratanya menyatakan hubungan antara gradien garis tangen dengan kurva di dan gradien garis yang melalui titik-titik dan .
Jika kontinu pada
dan jika terdiferensialkan pada ,
maka ada setidaknya satu titik, di : .
Langkah 2
Langkah 2.1
Untuk menentukan apakah fungsi tersebut kontinu pada atau tidak, tentukan domain .
Langkah 2.1.1
Atur penyebut dalam agar sama dengan untuk menentukan di mana pernyataannya tidak terdefinisi.
Langkah 2.1.2
Domain adalah semua nilai dari yang membuat pernyataan tersebut terdefinisi.
Notasi Interval:
Notasi Pembuat Himpunan:
Notasi Interval:
Notasi Pembuat Himpunan:
Langkah 2.2
tidak kontinu di karena tidak ada di dalam domain dari .
Fungsinya tidak kontinu.
Fungsinya tidak kontinu.
Langkah 3