Kalkulus Contoh

Tentukan di mana Fungsinya Meningkat/Menurun Menggunakan Turunan y=1/x
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 2.1.1
Tulis kembali sebagai .
Langkah 2.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.1.3
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 2.2
Turunan pertama dari terhadap adalah .
Langkah 3
Buat turunan pertamanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Buat turunan pertamanya agar sama dengan .
Langkah 3.2
Atur agar pembilangnya sama dengan nol.
Langkah 3.3
Karena , tidak ada penyelesaian.
Tidak ada penyelesaian
Tidak ada penyelesaian
Langkah 4
Tidak ada nilai dari di domain soal awal yang nilai-turunannya adalah atau tidak terdefinisi.
Tidak ditemukan titik kritis
Langkah 5
Tentukan di mana turunannya tidak terdefinisi.
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Atur penyebut dalam agar sama dengan untuk menentukan di mana pernyataannya tidak terdefinisi.
Langkah 5.2
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 5.2.2
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 5.2.2.1
Tulis kembali sebagai .
Langkah 5.2.2.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 5.2.2.3
Tambah atau kurang adalah .
Langkah 6
Setelah mencari titik yang membuat turunan sama dengan atau tidak terdefinisi, interval untuk memeriksa di mana meningkat dan di mana menurun yaitu .
Langkah 7
Substitusikan nilai dari interval ke dalam turunannya untuk menentukan apakah fungsinya naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 7.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.1
Naikkan menjadi pangkat .
Langkah 7.2.2
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 7.2.2.1
Batalkan faktor persekutuan.
Langkah 7.2.2.2
Tulis kembali pernyataannya.
Langkah 7.2.3
Kalikan dengan .
Langkah 7.2.4
Jawaban akhirnya adalah .
Langkah 7.3
Pada , turunannya adalah . Karena ini negatif, fungsinya menurun pada .
Menurun pada karena
Menurun pada karena
Langkah 8
Substitusikan nilai dari interval ke dalam turunannya untuk menentukan apakah fungsinya naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 8.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 8.2.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 8.2.2
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 8.2.2.1
Batalkan faktor persekutuan.
Langkah 8.2.2.2
Tulis kembali pernyataannya.
Langkah 8.2.3
Kalikan dengan .
Langkah 8.2.4
Jawaban akhirnya adalah .
Langkah 8.3
Pada , turunannya adalah . Karena ini negatif, fungsinya menurun pada .
Menurun pada karena
Menurun pada karena
Langkah 9
Sebutkan interval-interval yang fungsinya naik dan turun.
Menurun pada:
Langkah 10