Kalkulus Contoh

Tentukan di mana Fungsinya Meningkat/Menurun Menggunakan Turunan y=x^4-3x^3+3x^2-x
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 2.1.1
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 2.1.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 2.1.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.1.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.1.2.3
Kalikan dengan .
Langkah 2.1.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.1.3.3
Kalikan dengan .
Langkah 2.1.4
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.1.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.1.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.1.4.3
Kalikan dengan .
Langkah 2.2
Turunan pertama dari terhadap adalah .
Langkah 3
Buat turunan pertamanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Buat turunan pertamanya agar sama dengan .
Langkah 3.2
Faktorkan sisi kiri persamaannya.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Faktorkan menggunakan uji akar rasional.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1.1
Jika fungsi Polinomial memiliki koefisien bilangan bulat, maka setiap nol rasional akan memiliki bentuk di mana adalah faktor dari konstanta dan adalah faktor dari koefisien pertama.
Langkah 3.2.1.2
Tentukan setiap gabungan dari . Ini adalah akar yang memungkinkan dari fungsi polinomial.
Langkah 3.2.1.3
Substitusikan dan sederhanakan pernyataannya. Dalam hal ini, pernyataannya sama dengan sehingga adalah akar dari polinomialnya.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1.3.1
Substitusikan ke dalam polinomialnya.
Langkah 3.2.1.3.2
Naikkan menjadi pangkat .
Langkah 3.2.1.3.3
Kalikan dengan .
Langkah 3.2.1.3.4
Naikkan menjadi pangkat .
Langkah 3.2.1.3.5
Kalikan dengan .
Langkah 3.2.1.3.6
Kurangi dengan .
Langkah 3.2.1.3.7
Kalikan dengan .
Langkah 3.2.1.3.8
Tambahkan dan .
Langkah 3.2.1.3.9
Kurangi dengan .
Langkah 3.2.1.4
Karena adalah akar yang telah diketahui, bagi polinomial tersebut dengan untuk mencari polinomial hasil bagi. Polinomial ini kemudian dapat digunakan untuk menemukan akar yang belum diketahui.
Langkah 3.2.1.5
Bagilah dengan .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1.5.1
Tulis polinomial yang akan dibagi. Jika tidak ada suku untuk setiap eksponen, masukan suku dengan nilai .
--+-
Langkah 3.2.1.5.2
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
--+-
Langkah 3.2.1.5.3
Kalikan suku hasil bagi baru dengan pembagi.
--+-
+-
Langkah 3.2.1.5.4
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
--+-
-+
Langkah 3.2.1.5.5
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
--+-
-+
-
Langkah 3.2.1.5.6
Mengeluarkan suku-suku berikutnya dari bilangan yang dibagi asli ke dalam bilangan yang dibagi saat ini.
--+-
-+
-+
Langkah 3.2.1.5.7
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
-
--+-
-+
-+
Langkah 3.2.1.5.8
Kalikan suku hasil bagi baru dengan pembagi.
-
--+-
-+
-+
-+
Langkah 3.2.1.5.9
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
-
--+-
-+
-+
+-
Langkah 3.2.1.5.10
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
-
--+-
-+
-+
+-
+
Langkah 3.2.1.5.11
Mengeluarkan suku-suku berikutnya dari bilangan yang dibagi asli ke dalam bilangan yang dibagi saat ini.
-
--+-
-+
-+
+-
+-
Langkah 3.2.1.5.12
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
-+
--+-
-+
-+
+-
+-
Langkah 3.2.1.5.13
Kalikan suku hasil bagi baru dengan pembagi.
-+
--+-
-+
-+
+-
+-
+-
Langkah 3.2.1.5.14
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
-+
--+-
-+
-+
+-
+-
-+
Langkah 3.2.1.5.15
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
-+
--+-
-+
-+
+-
+-
-+
Langkah 3.2.1.5.16
Karena sisanya adalah , maka jawaban akhirnya adalah hasil baginya.
Langkah 3.2.1.6
Tulis sebagai himpunan faktor.
Langkah 3.2.2
Faktorkan dengan pengelompokan.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.2.1
Faktorkan dengan pengelompokan.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.2.1.1
Untuk polinomial dari bentuk , tulis kembali suku tengahnya sebagai penjumlahan dari dua suku yang hasil kalinya adalah dan yang jumlahnya adalah .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.2.1.1.1
Faktorkan dari .
Langkah 3.2.2.1.1.2
Tulis kembali sebagai ditambah
Langkah 3.2.2.1.1.3
Terapkan sifat distributif.
Langkah 3.2.2.1.2
Faktorkan faktor persekutuan terbesar dari setiap kelompok.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.2.1.2.1
Kelompokkan dua suku pertama dan dua suku terakhir.
Langkah 3.2.2.1.2.2
Faktorkan faktor persekutuan terbesar (FPB) dari setiap kelompok.
Langkah 3.2.2.1.3
Faktorkan polinomial dengan memfaktorkan faktor persekutuan terbesar, .
Langkah 3.2.2.2
Hilangkan tanda kurung yang tidak perlu.
Langkah 3.3
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 3.4
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.4.1
Atur sama dengan .
Langkah 3.4.2
Tambahkan ke kedua sisi persamaan.
Langkah 3.5
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.5.1
Atur sama dengan .
Langkah 3.5.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.1
Tambahkan ke kedua sisi persamaan.
Langkah 3.5.2.2
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.2.1
Bagilah setiap suku di dengan .
Langkah 3.5.2.2.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.2.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.2.2.1.1
Batalkan faktor persekutuan.
Langkah 3.5.2.2.2.1.2
Bagilah dengan .
Langkah 3.6
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 4
Nilai-nilai yang membuat turunannya sama dengan adalah .
Langkah 5
Pisahkan menjadi interval terpisah di sekitar nilai yang menjadikan turunan atau tidak terdefinisi.
Langkah 6
Substitusikan nilai dari interval ke dalam turunannya untuk menentukan apakah fungsinya naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 6.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1.1
Naikkan menjadi pangkat .
Langkah 6.2.1.2
Kalikan dengan .
Langkah 6.2.1.3
Naikkan menjadi pangkat .
Langkah 6.2.1.4
Kalikan dengan .
Langkah 6.2.1.5
Kalikan dengan .
Langkah 6.2.2
Sederhanakan dengan mengurangkan bilangan.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.2.1
Kurangi dengan .
Langkah 6.2.2.2
Kurangi dengan .
Langkah 6.2.2.3
Kurangi dengan .
Langkah 6.2.3
Jawaban akhirnya adalah .
Langkah 6.3
Pada , turunannya adalah . Karena ini negatif, fungsinya menurun pada .
Menurun pada karena
Menurun pada karena
Langkah 7
Substitusikan nilai dari interval ke dalam turunannya untuk menentukan apakah fungsinya naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 7.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.1.1
Naikkan menjadi pangkat .
Langkah 7.2.1.2
Kalikan dengan .
Langkah 7.2.1.3
Naikkan menjadi pangkat .
Langkah 7.2.1.4
Kalikan dengan .
Langkah 7.2.1.5
Kalikan dengan .
Langkah 7.2.2
Sederhanakan dengan menambahkan dan mengurangkan.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.2.1
Kurangi dengan .
Langkah 7.2.2.2
Tambahkan dan .
Langkah 7.2.2.3
Kurangi dengan .
Langkah 7.2.3
Jawaban akhirnya adalah .
Langkah 7.3
Pada , turunannya adalah . Karena ini positif, fungsinya meningkat pada .
Meningkat pada karena
Meningkat pada karena
Langkah 8
Substitusikan nilai dari interval ke dalam turunannya untuk menentukan apakah fungsinya naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 8.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 8.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 8.2.1.1
Naikkan menjadi pangkat .
Langkah 8.2.1.2
Kalikan dengan .
Langkah 8.2.1.3
Naikkan menjadi pangkat .
Langkah 8.2.1.4
Kalikan dengan .
Langkah 8.2.1.5
Kalikan dengan .
Langkah 8.2.2
Sederhanakan dengan menambahkan dan mengurangkan.
Ketuk untuk lebih banyak langkah...
Langkah 8.2.2.1
Kurangi dengan .
Langkah 8.2.2.2
Tambahkan dan .
Langkah 8.2.2.3
Kurangi dengan .
Langkah 8.2.3
Jawaban akhirnya adalah .
Langkah 8.3
Pada , turunannya adalah . Karena ini positif, fungsinya meningkat pada .
Meningkat pada karena
Meningkat pada karena
Langkah 9
Sebutkan interval-interval yang fungsinya naik dan turun.
Meningkat pada:
Menurun pada:
Langkah 10