Masukkan soal...
Kalkulus Contoh
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Langkah 2.1
Tentukan turunan pertamanya.
Langkah 2.1.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 2.1.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.1.1.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 2.1.1.3
Ganti semua kemunculan dengan .
Langkah 2.1.2
Diferensialkan.
Langkah 2.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.1.2.3
Kalikan dengan .
Langkah 2.1.3
Sederhanakan.
Langkah 2.1.3.1
Susun kembali faktor-faktor dari .
Langkah 2.1.3.2
Susun kembali faktor-faktor dalam .
Langkah 2.2
Tentukan turunan keduanya.
Langkah 2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.2
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 2.2.3
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 2.2.3.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.2.3.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 2.2.3.3
Ganti semua kemunculan dengan .
Langkah 2.2.4
Diferensialkan.
Langkah 2.2.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.4.3
Kalikan dengan .
Langkah 2.2.5
Naikkan menjadi pangkat .
Langkah 2.2.6
Naikkan menjadi pangkat .
Langkah 2.2.7
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.2.8
Sederhanakan pernyataannya.
Langkah 2.2.8.1
Tambahkan dan .
Langkah 2.2.8.2
Pindahkan ke sebelah kiri .
Langkah 2.2.9
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.10
Kalikan dengan .
Langkah 2.2.11
Sederhanakan.
Langkah 2.2.11.1
Terapkan sifat distributif.
Langkah 2.2.11.2
Kalikan dengan .
Langkah 2.2.11.3
Susun kembali suku-suku.
Langkah 2.2.11.4
Susun kembali faktor-faktor dalam .
Langkah 2.3
Turunan kedua dari terhadap adalah .
Langkah 3
Langkah 3.1
Atur turunan keduanya sama dengan .
Langkah 3.2
Faktorkan dari .
Langkah 3.2.1
Faktorkan dari .
Langkah 3.2.2
Faktorkan dari .
Langkah 3.2.3
Faktorkan dari .
Langkah 3.3
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 3.4
Atur agar sama dengan dan selesaikan .
Langkah 3.4.1
Atur sama dengan .
Langkah 3.4.2
Selesaikan untuk .
Langkah 3.4.2.1
Ambil logaritma alami dari kedua sisi persamaan untuk menghapus variabel dari eksponennya.
Langkah 3.4.2.2
Persamaannya tidak dapat diselesaikan karena tidak terdefinisi.
Tidak terdefinisi
Langkah 3.4.2.3
Tidak ada penyelesaian untuk
Tidak ada penyelesaian
Tidak ada penyelesaian
Tidak ada penyelesaian
Langkah 3.5
Atur agar sama dengan dan selesaikan .
Langkah 3.5.1
Atur sama dengan .
Langkah 3.5.2
Selesaikan untuk .
Langkah 3.5.2.1
Tambahkan ke kedua sisi persamaan.
Langkah 3.5.2.2
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 3.5.2.2.1
Bagilah setiap suku di dengan .
Langkah 3.5.2.2.2
Sederhanakan sisi kirinya.
Langkah 3.5.2.2.2.1
Batalkan faktor persekutuan dari .
Langkah 3.5.2.2.2.1.1
Batalkan faktor persekutuan.
Langkah 3.5.2.2.2.1.2
Bagilah dengan .
Langkah 3.5.2.3
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 3.5.2.4
Sederhanakan .
Langkah 3.5.2.4.1
Tulis kembali sebagai .
Langkah 3.5.2.4.2
Sebarang akar dari adalah .
Langkah 3.5.2.4.3
Kalikan dengan .
Langkah 3.5.2.4.4
Gabungkan dan sederhanakan penyebutnya.
Langkah 3.5.2.4.4.1
Kalikan dengan .
Langkah 3.5.2.4.4.2
Naikkan menjadi pangkat .
Langkah 3.5.2.4.4.3
Naikkan menjadi pangkat .
Langkah 3.5.2.4.4.4
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 3.5.2.4.4.5
Tambahkan dan .
Langkah 3.5.2.4.4.6
Tulis kembali sebagai .
Langkah 3.5.2.4.4.6.1
Gunakan untuk menuliskan kembali sebagai .
Langkah 3.5.2.4.4.6.2
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 3.5.2.4.4.6.3
Gabungkan dan .
Langkah 3.5.2.4.4.6.4
Batalkan faktor persekutuan dari .
Langkah 3.5.2.4.4.6.4.1
Batalkan faktor persekutuan.
Langkah 3.5.2.4.4.6.4.2
Tulis kembali pernyataannya.
Langkah 3.5.2.4.4.6.5
Evaluasi eksponennya.
Langkah 3.5.2.5
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 3.5.2.5.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 3.5.2.5.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 3.5.2.5.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 3.6
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 4
Langkah 4.1
Substitusikan dalam untuk menemukan nilai dari .
Langkah 4.1.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 4.1.2
Sederhanakan hasilnya.
Langkah 4.1.2.1
Terapkan kaidah hasil kali ke .
Langkah 4.1.2.2
Tulis kembali sebagai .
Langkah 4.1.2.2.1
Gunakan untuk menuliskan kembali sebagai .
Langkah 4.1.2.2.2
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 4.1.2.2.3
Gabungkan dan .
Langkah 4.1.2.2.4
Batalkan faktor persekutuan dari .
Langkah 4.1.2.2.4.1
Batalkan faktor persekutuan.
Langkah 4.1.2.2.4.2
Tulis kembali pernyataannya.
Langkah 4.1.2.2.5
Evaluasi eksponennya.
Langkah 4.1.2.3
Naikkan menjadi pangkat .
Langkah 4.1.2.4
Hapus faktor persekutuan dari dan .
Langkah 4.1.2.4.1
Faktorkan dari .
Langkah 4.1.2.4.2
Batalkan faktor persekutuan.
Langkah 4.1.2.4.2.1
Faktorkan dari .
Langkah 4.1.2.4.2.2
Batalkan faktor persekutuan.
Langkah 4.1.2.4.2.3
Tulis kembali pernyataannya.
Langkah 4.1.2.5
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 4.1.2.6
Jawaban akhirnya adalah .
Langkah 4.2
Titiknya yang ditemukan dengan mensubsitusi dalam adalah . Titik ini dapat menjadi titik belok.
Langkah 4.3
Substitusikan dalam untuk menemukan nilai dari .
Langkah 4.3.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 4.3.2
Sederhanakan hasilnya.
Langkah 4.3.2.1
Gunakan kaidah pangkat untuk menyebarkan pangkat.
Langkah 4.3.2.1.1
Terapkan kaidah hasil kali ke .
Langkah 4.3.2.1.2
Terapkan kaidah hasil kali ke .
Langkah 4.3.2.2
Kalikan dengan dengan menambahkan eksponennya.
Langkah 4.3.2.2.1
Pindahkan .
Langkah 4.3.2.2.2
Kalikan dengan .
Langkah 4.3.2.2.2.1
Naikkan menjadi pangkat .
Langkah 4.3.2.2.2.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 4.3.2.2.3
Tambahkan dan .
Langkah 4.3.2.3
Naikkan menjadi pangkat .
Langkah 4.3.2.4
Tulis kembali sebagai .
Langkah 4.3.2.4.1
Gunakan untuk menuliskan kembali sebagai .
Langkah 4.3.2.4.2
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 4.3.2.4.3
Gabungkan dan .
Langkah 4.3.2.4.4
Batalkan faktor persekutuan dari .
Langkah 4.3.2.4.4.1
Batalkan faktor persekutuan.
Langkah 4.3.2.4.4.2
Tulis kembali pernyataannya.
Langkah 4.3.2.4.5
Evaluasi eksponennya.
Langkah 4.3.2.5
Naikkan menjadi pangkat .
Langkah 4.3.2.6
Hapus faktor persekutuan dari dan .
Langkah 4.3.2.6.1
Faktorkan dari .
Langkah 4.3.2.6.2
Batalkan faktor persekutuan.
Langkah 4.3.2.6.2.1
Faktorkan dari .
Langkah 4.3.2.6.2.2
Batalkan faktor persekutuan.
Langkah 4.3.2.6.2.3
Tulis kembali pernyataannya.
Langkah 4.3.2.7
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 4.3.2.8
Jawaban akhirnya adalah .
Langkah 4.4
Titiknya yang ditemukan dengan mensubsitusi dalam adalah . Titik ini dapat menjadi titik belok.
Langkah 4.5
Tentukan titik-titik yang dapat menjadi titik belok.
Langkah 5
Pisahkan menjadi interval di sekitar titik-titik yang dapat berpotensi menjadi titik-titik belok.
Langkah 6
Langkah 6.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 6.2
Sederhanakan hasilnya.
Langkah 6.2.1
Sederhanakan setiap suku.
Langkah 6.2.1.1
Naikkan menjadi pangkat .
Langkah 6.2.1.2
Kalikan dengan .
Langkah 6.2.1.3
Naikkan menjadi pangkat .
Langkah 6.2.1.4
Kalikan dengan .
Langkah 6.2.1.5
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 6.2.1.6
Gabungkan dan .
Langkah 6.2.1.7
Ganti dengan nilai perkiraan.
Langkah 6.2.1.8
Naikkan menjadi pangkat .
Langkah 6.2.1.9
Bagilah dengan .
Langkah 6.2.1.10
Naikkan menjadi pangkat .
Langkah 6.2.1.11
Kalikan dengan .
Langkah 6.2.1.12
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 6.2.1.13
Gabungkan dan .
Langkah 6.2.1.14
Pindahkan tanda negatif di depan pecahan.
Langkah 6.2.2
Kurangi dengan .
Langkah 6.2.3
Jawaban akhirnya adalah .
Langkah 6.3
Pada , turunan keduanya adalah . Karena ini positif, turunan keduanya meningkat pada interval .
Meningkat pada karena
Meningkat pada karena
Langkah 7
Langkah 7.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 7.2
Sederhanakan hasilnya.
Langkah 7.2.1
Sederhanakan setiap suku.
Langkah 7.2.1.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 7.2.1.2
Kalikan dengan .
Langkah 7.2.1.3
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 7.2.1.4
Kalikan dengan .
Langkah 7.2.1.5
Apa pun yang dinaikkan ke adalah .
Langkah 7.2.1.6
Kalikan dengan .
Langkah 7.2.1.7
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 7.2.1.8
Kalikan dengan .
Langkah 7.2.1.9
Apa pun yang dinaikkan ke adalah .
Langkah 7.2.1.10
Kalikan dengan .
Langkah 7.2.2
Kurangi dengan .
Langkah 7.2.3
Jawaban akhirnya adalah .
Langkah 7.3
Pada , turunan kedua adalah . Karena ini negatif, turunan kedua menurun pada interval
Menurun pada karena
Menurun pada karena
Langkah 8
Langkah 8.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 8.2
Sederhanakan hasilnya.
Langkah 8.2.1
Sederhanakan setiap suku.
Langkah 8.2.1.1
Naikkan menjadi pangkat .
Langkah 8.2.1.2
Kalikan dengan .
Langkah 8.2.1.3
Naikkan menjadi pangkat .
Langkah 8.2.1.4
Kalikan dengan .
Langkah 8.2.1.5
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 8.2.1.6
Gabungkan dan .
Langkah 8.2.1.7
Ganti dengan nilai perkiraan.
Langkah 8.2.1.8
Naikkan menjadi pangkat .
Langkah 8.2.1.9
Bagilah dengan .
Langkah 8.2.1.10
Naikkan menjadi pangkat .
Langkah 8.2.1.11
Kalikan dengan .
Langkah 8.2.1.12
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 8.2.1.13
Gabungkan dan .
Langkah 8.2.1.14
Pindahkan tanda negatif di depan pecahan.
Langkah 8.2.2
Kurangi dengan .
Langkah 8.2.3
Jawaban akhirnya adalah .
Langkah 8.3
Pada , turunan keduanya adalah . Karena ini positif, turunan keduanya meningkat pada interval .
Meningkat pada karena
Meningkat pada karena
Langkah 9
Titik belok adalah sebuah titik pada kurva di mana kecekungan berubah dari positif ke negatif atau dari negatif ke positif. Titik-titik belok dalam kasus ini adalah .
Langkah 10