Kalkulus Contoh

Cari Titik-titik Beloknya e^(-x^2)
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Tentukan turunan keduanya.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 2.1.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.1.1.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 2.1.1.3
Ganti semua kemunculan dengan .
Langkah 2.1.2
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 2.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.1.2.3
Kalikan dengan .
Langkah 2.1.3
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.1.3.1
Susun kembali faktor-faktor dari .
Langkah 2.1.3.2
Susun kembali faktor-faktor dalam .
Langkah 2.2
Tentukan turunan keduanya.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.2
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 2.2.3
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.3.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.2.3.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 2.2.3.3
Ganti semua kemunculan dengan .
Langkah 2.2.4
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.4.3
Kalikan dengan .
Langkah 2.2.5
Naikkan menjadi pangkat .
Langkah 2.2.6
Naikkan menjadi pangkat .
Langkah 2.2.7
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.2.8
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.8.1
Tambahkan dan .
Langkah 2.2.8.2
Pindahkan ke sebelah kiri .
Langkah 2.2.9
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.10
Kalikan dengan .
Langkah 2.2.11
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.11.1
Terapkan sifat distributif.
Langkah 2.2.11.2
Kalikan dengan .
Langkah 2.2.11.3
Susun kembali suku-suku.
Langkah 2.2.11.4
Susun kembali faktor-faktor dalam .
Langkah 2.3
Turunan kedua dari terhadap adalah .
Langkah 3
Atur turunan keduanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Atur turunan keduanya sama dengan .
Langkah 3.2
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Faktorkan dari .
Langkah 3.2.2
Faktorkan dari .
Langkah 3.2.3
Faktorkan dari .
Langkah 3.3
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 3.4
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.4.1
Atur sama dengan .
Langkah 3.4.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 3.4.2.1
Ambil logaritma alami dari kedua sisi persamaan untuk menghapus variabel dari eksponennya.
Langkah 3.4.2.2
Persamaannya tidak dapat diselesaikan karena tidak terdefinisi.
Tidak terdefinisi
Langkah 3.4.2.3
Tidak ada penyelesaian untuk
Tidak ada penyelesaian
Tidak ada penyelesaian
Tidak ada penyelesaian
Langkah 3.5
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.5.1
Atur sama dengan .
Langkah 3.5.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.1
Tambahkan ke kedua sisi persamaan.
Langkah 3.5.2.2
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.2.1
Bagilah setiap suku di dengan .
Langkah 3.5.2.2.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.2.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.2.2.1.1
Batalkan faktor persekutuan.
Langkah 3.5.2.2.2.1.2
Bagilah dengan .
Langkah 3.5.2.3
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 3.5.2.4
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.4.1
Tulis kembali sebagai .
Langkah 3.5.2.4.2
Sebarang akar dari adalah .
Langkah 3.5.2.4.3
Kalikan dengan .
Langkah 3.5.2.4.4
Gabungkan dan sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.4.4.1
Kalikan dengan .
Langkah 3.5.2.4.4.2
Naikkan menjadi pangkat .
Langkah 3.5.2.4.4.3
Naikkan menjadi pangkat .
Langkah 3.5.2.4.4.4
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 3.5.2.4.4.5
Tambahkan dan .
Langkah 3.5.2.4.4.6
Tulis kembali sebagai .
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.4.4.6.1
Gunakan untuk menuliskan kembali sebagai .
Langkah 3.5.2.4.4.6.2
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 3.5.2.4.4.6.3
Gabungkan dan .
Langkah 3.5.2.4.4.6.4
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.4.4.6.4.1
Batalkan faktor persekutuan.
Langkah 3.5.2.4.4.6.4.2
Tulis kembali pernyataannya.
Langkah 3.5.2.4.4.6.5
Evaluasi eksponennya.
Langkah 3.5.2.5
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.5.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 3.5.2.5.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 3.5.2.5.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 3.6
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 4
Tentukan titik di mana turunan keduanya adalah .
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Substitusikan dalam untuk menemukan nilai dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 4.1.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.1
Terapkan kaidah hasil kali ke .
Langkah 4.1.2.2
Tulis kembali sebagai .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.2.1
Gunakan untuk menuliskan kembali sebagai .
Langkah 4.1.2.2.2
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 4.1.2.2.3
Gabungkan dan .
Langkah 4.1.2.2.4
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.2.4.1
Batalkan faktor persekutuan.
Langkah 4.1.2.2.4.2
Tulis kembali pernyataannya.
Langkah 4.1.2.2.5
Evaluasi eksponennya.
Langkah 4.1.2.3
Naikkan menjadi pangkat .
Langkah 4.1.2.4
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.4.1
Faktorkan dari .
Langkah 4.1.2.4.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.4.2.1
Faktorkan dari .
Langkah 4.1.2.4.2.2
Batalkan faktor persekutuan.
Langkah 4.1.2.4.2.3
Tulis kembali pernyataannya.
Langkah 4.1.2.5
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 4.1.2.6
Jawaban akhirnya adalah .
Langkah 4.2
Titiknya yang ditemukan dengan mensubsitusi dalam adalah . Titik ini dapat menjadi titik belok.
Langkah 4.3
Substitusikan dalam untuk menemukan nilai dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 4.3.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.2.1
Gunakan kaidah pangkat untuk menyebarkan pangkat.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.2.1.1
Terapkan kaidah hasil kali ke .
Langkah 4.3.2.1.2
Terapkan kaidah hasil kali ke .
Langkah 4.3.2.2
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.2.2.1
Pindahkan .
Langkah 4.3.2.2.2
Kalikan dengan .
Ketuk untuk lebih banyak langkah...
Langkah 4.3.2.2.2.1
Naikkan menjadi pangkat .
Langkah 4.3.2.2.2.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 4.3.2.2.3
Tambahkan dan .
Langkah 4.3.2.3
Naikkan menjadi pangkat .
Langkah 4.3.2.4
Tulis kembali sebagai .
Ketuk untuk lebih banyak langkah...
Langkah 4.3.2.4.1
Gunakan untuk menuliskan kembali sebagai .
Langkah 4.3.2.4.2
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 4.3.2.4.3
Gabungkan dan .
Langkah 4.3.2.4.4
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.3.2.4.4.1
Batalkan faktor persekutuan.
Langkah 4.3.2.4.4.2
Tulis kembali pernyataannya.
Langkah 4.3.2.4.5
Evaluasi eksponennya.
Langkah 4.3.2.5
Naikkan menjadi pangkat .
Langkah 4.3.2.6
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 4.3.2.6.1
Faktorkan dari .
Langkah 4.3.2.6.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.2.6.2.1
Faktorkan dari .
Langkah 4.3.2.6.2.2
Batalkan faktor persekutuan.
Langkah 4.3.2.6.2.3
Tulis kembali pernyataannya.
Langkah 4.3.2.7
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 4.3.2.8
Jawaban akhirnya adalah .
Langkah 4.4
Titiknya yang ditemukan dengan mensubsitusi dalam adalah . Titik ini dapat menjadi titik belok.
Langkah 4.5
Tentukan titik-titik yang dapat menjadi titik belok.
Langkah 5
Pisahkan menjadi interval di sekitar titik-titik yang dapat berpotensi menjadi titik-titik belok.
Langkah 6
Substitusikan nilai dari interval ke dalam turunan keduanya untuk menentukan apakah naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 6.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1.1
Naikkan menjadi pangkat .
Langkah 6.2.1.2
Kalikan dengan .
Langkah 6.2.1.3
Naikkan menjadi pangkat .
Langkah 6.2.1.4
Kalikan dengan .
Langkah 6.2.1.5
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 6.2.1.6
Gabungkan dan .
Langkah 6.2.1.7
Ganti dengan nilai perkiraan.
Langkah 6.2.1.8
Naikkan menjadi pangkat .
Langkah 6.2.1.9
Bagilah dengan .
Langkah 6.2.1.10
Naikkan menjadi pangkat .
Langkah 6.2.1.11
Kalikan dengan .
Langkah 6.2.1.12
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 6.2.1.13
Gabungkan dan .
Langkah 6.2.1.14
Pindahkan tanda negatif di depan pecahan.
Langkah 6.2.2
Kurangi dengan .
Langkah 6.2.3
Jawaban akhirnya adalah .
Langkah 6.3
Pada , turunan keduanya adalah . Karena ini positif, turunan keduanya meningkat pada interval .
Meningkat pada karena
Meningkat pada karena
Langkah 7
Substitusikan nilai dari interval ke dalam turunan keduanya untuk menentukan apakah naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 7.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.1.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 7.2.1.2
Kalikan dengan .
Langkah 7.2.1.3
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 7.2.1.4
Kalikan dengan .
Langkah 7.2.1.5
Apa pun yang dinaikkan ke adalah .
Langkah 7.2.1.6
Kalikan dengan .
Langkah 7.2.1.7
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 7.2.1.8
Kalikan dengan .
Langkah 7.2.1.9
Apa pun yang dinaikkan ke adalah .
Langkah 7.2.1.10
Kalikan dengan .
Langkah 7.2.2
Kurangi dengan .
Langkah 7.2.3
Jawaban akhirnya adalah .
Langkah 7.3
Pada , turunan kedua adalah . Karena ini negatif, turunan kedua menurun pada interval
Menurun pada karena
Menurun pada karena
Langkah 8
Substitusikan nilai dari interval ke dalam turunan keduanya untuk menentukan apakah naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 8.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 8.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 8.2.1.1
Naikkan menjadi pangkat .
Langkah 8.2.1.2
Kalikan dengan .
Langkah 8.2.1.3
Naikkan menjadi pangkat .
Langkah 8.2.1.4
Kalikan dengan .
Langkah 8.2.1.5
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 8.2.1.6
Gabungkan dan .
Langkah 8.2.1.7
Ganti dengan nilai perkiraan.
Langkah 8.2.1.8
Naikkan menjadi pangkat .
Langkah 8.2.1.9
Bagilah dengan .
Langkah 8.2.1.10
Naikkan menjadi pangkat .
Langkah 8.2.1.11
Kalikan dengan .
Langkah 8.2.1.12
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 8.2.1.13
Gabungkan dan .
Langkah 8.2.1.14
Pindahkan tanda negatif di depan pecahan.
Langkah 8.2.2
Kurangi dengan .
Langkah 8.2.3
Jawaban akhirnya adalah .
Langkah 8.3
Pada , turunan keduanya adalah . Karena ini positif, turunan keduanya meningkat pada interval .
Meningkat pada karena
Meningkat pada karena
Langkah 9
Titik belok adalah sebuah titik pada kurva di mana kecekungan berubah dari positif ke negatif atau dari negatif ke positif. Titik-titik belok dalam kasus ini adalah .
Langkah 10