Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Tentukan turunan pertamanya.
Langkah 1.1.1
Diferensialkan.
Langkah 1.1.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 1.1.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2
Evaluasi .
Langkah 1.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2.3
Kalikan dengan .
Langkah 1.1.3
Diferensialkan menggunakan Aturan Konstanta.
Langkah 1.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.3.2
Tambahkan dan .
Langkah 1.2
Tentukan turunan keduanya.
Langkah 1.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 1.2.2
Evaluasi .
Langkah 1.2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.2.3
Kalikan dengan .
Langkah 1.2.3
Evaluasi .
Langkah 1.2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.3.3
Kalikan dengan .
Langkah 1.2.4
Evaluasi .
Langkah 1.2.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.4.3
Kalikan dengan .
Langkah 1.3
Turunan kedua dari terhadap adalah .
Langkah 2
Langkah 2.1
Atur turunan keduanya sama dengan .
Langkah 2.2
Faktorkan sisi kiri persamaannya.
Langkah 2.2.1
Faktorkan dari .
Langkah 2.2.1.1
Faktorkan dari .
Langkah 2.2.1.2
Faktorkan dari .
Langkah 2.2.1.3
Faktorkan dari .
Langkah 2.2.1.4
Faktorkan dari .
Langkah 2.2.1.5
Faktorkan dari .
Langkah 2.2.2
Faktorkan.
Langkah 2.2.2.1
Faktorkan dengan pengelompokan.
Langkah 2.2.2.1.1
Untuk polinomial dari bentuk , tulis kembali suku tengahnya sebagai penjumlahan dari dua suku yang hasil kalinya adalah dan yang jumlahnya adalah .
Langkah 2.2.2.1.1.1
Kalikan dengan .
Langkah 2.2.2.1.1.2
Tulis kembali sebagai ditambah
Langkah 2.2.2.1.1.3
Terapkan sifat distributif.
Langkah 2.2.2.1.2
Faktorkan faktor persekutuan terbesar dari setiap kelompok.
Langkah 2.2.2.1.2.1
Kelompokkan dua suku pertama dan dua suku terakhir.
Langkah 2.2.2.1.2.2
Faktorkan faktor persekutuan terbesar (FPB) dari setiap kelompok.
Langkah 2.2.2.1.3
Faktorkan polinomial dengan memfaktorkan faktor persekutuan terbesar, .
Langkah 2.2.2.2
Hilangkan tanda kurung yang tidak perlu.
Langkah 2.3
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 2.4
Atur agar sama dengan dan selesaikan .
Langkah 2.4.1
Atur sama dengan .
Langkah 2.4.2
Selesaikan untuk .
Langkah 2.4.2.1
Tambahkan ke kedua sisi persamaan.
Langkah 2.4.2.2
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 2.4.2.2.1
Bagilah setiap suku di dengan .
Langkah 2.4.2.2.2
Sederhanakan sisi kirinya.
Langkah 2.4.2.2.2.1
Batalkan faktor persekutuan dari .
Langkah 2.4.2.2.2.1.1
Batalkan faktor persekutuan.
Langkah 2.4.2.2.2.1.2
Bagilah dengan .
Langkah 2.5
Atur agar sama dengan dan selesaikan .
Langkah 2.5.1
Atur sama dengan .
Langkah 2.5.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 2.6
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 3
Langkah 3.1
Substitusikan dalam untuk menemukan nilai dari .
Langkah 3.1.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 3.1.2
Sederhanakan hasilnya.
Langkah 3.1.2.1
Sederhanakan setiap suku.
Langkah 3.1.2.1.1
Terapkan kaidah hasil kali ke .
Langkah 3.1.2.1.2
Naikkan menjadi pangkat .
Langkah 3.1.2.1.3
Naikkan menjadi pangkat .
Langkah 3.1.2.1.4
Terapkan kaidah hasil kali ke .
Langkah 3.1.2.1.5
Naikkan menjadi pangkat .
Langkah 3.1.2.1.6
Naikkan menjadi pangkat .
Langkah 3.1.2.1.7
Terapkan kaidah hasil kali ke .
Langkah 3.1.2.1.8
Naikkan menjadi pangkat .
Langkah 3.1.2.1.9
Naikkan menjadi pangkat .
Langkah 3.1.2.1.10
Batalkan faktor persekutuan dari .
Langkah 3.1.2.1.10.1
Faktorkan dari .
Langkah 3.1.2.1.10.2
Faktorkan dari .
Langkah 3.1.2.1.10.3
Batalkan faktor persekutuan.
Langkah 3.1.2.1.10.4
Tulis kembali pernyataannya.
Langkah 3.1.2.1.11
Gabungkan dan .
Langkah 3.1.2.1.12
Kalikan dengan .
Langkah 3.1.2.1.13
Pindahkan tanda negatif di depan pecahan.
Langkah 3.1.2.2
Menentukan penyebut persekutuan.
Langkah 3.1.2.2.1
Kalikan dengan .
Langkah 3.1.2.2.2
Kalikan dengan .
Langkah 3.1.2.2.3
Kalikan dengan .
Langkah 3.1.2.2.4
Kalikan dengan .
Langkah 3.1.2.2.5
Tulis sebagai pecahan dengan penyebut .
Langkah 3.1.2.2.6
Kalikan dengan .
Langkah 3.1.2.2.7
Kalikan dengan .
Langkah 3.1.2.2.8
Susun kembali faktor-faktor dari .
Langkah 3.1.2.2.9
Kalikan dengan .
Langkah 3.1.2.2.10
Kalikan dengan .
Langkah 3.1.2.3
Gabungkan pembilang dari penyebut persekutuan.
Langkah 3.1.2.4
Sederhanakan setiap suku.
Langkah 3.1.2.4.1
Kalikan dengan .
Langkah 3.1.2.4.2
Kalikan dengan .
Langkah 3.1.2.4.3
Kalikan dengan .
Langkah 3.1.2.5
Sederhanakan pernyataannya.
Langkah 3.1.2.5.1
Tambahkan dan .
Langkah 3.1.2.5.2
Kurangi dengan .
Langkah 3.1.2.5.3
Tambahkan dan .
Langkah 3.1.2.5.4
Pindahkan tanda negatif di depan pecahan.
Langkah 3.1.2.6
Jawaban akhirnya adalah .
Langkah 3.2
Titiknya yang ditemukan dengan mensubsitusi dalam adalah . Titik ini dapat menjadi titik belok.
Langkah 3.3
Substitusikan dalam untuk menemukan nilai dari .
Langkah 3.3.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 3.3.2
Sederhanakan hasilnya.
Langkah 3.3.2.1
Sederhanakan setiap suku.
Langkah 3.3.2.1.1
Naikkan menjadi pangkat .
Langkah 3.3.2.1.2
Naikkan menjadi pangkat .
Langkah 3.3.2.1.3
Naikkan menjadi pangkat .
Langkah 3.3.2.1.4
Kalikan dengan .
Langkah 3.3.2.2
Sederhanakan dengan menambahkan dan mengurangkan.
Langkah 3.3.2.2.1
Kurangi dengan .
Langkah 3.3.2.2.2
Kurangi dengan .
Langkah 3.3.2.2.3
Tambahkan dan .
Langkah 3.3.2.3
Jawaban akhirnya adalah .
Langkah 3.4
Titiknya yang ditemukan dengan mensubsitusi dalam adalah . Titik ini dapat menjadi titik belok.
Langkah 3.5
Tentukan titik-titik yang dapat menjadi titik belok.
Langkah 4
Pisahkan menjadi interval di sekitar titik-titik yang dapat berpotensi menjadi titik-titik belok.
Langkah 5
Langkah 5.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 5.2
Sederhanakan hasilnya.
Langkah 5.2.1
Sederhanakan setiap suku.
Langkah 5.2.1.1
Naikkan menjadi pangkat .
Langkah 5.2.1.2
Kalikan dengan .
Langkah 5.2.1.3
Kalikan dengan .
Langkah 5.2.2
Sederhanakan dengan mengurangkan bilangan.
Langkah 5.2.2.1
Kurangi dengan .
Langkah 5.2.2.2
Kurangi dengan .
Langkah 5.2.3
Jawaban akhirnya adalah .
Langkah 5.3
Pada , turunan keduanya adalah . Karena ini positif, turunan keduanya meningkat pada interval .
Meningkat pada karena
Meningkat pada karena
Langkah 6
Langkah 6.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 6.2
Sederhanakan hasilnya.
Langkah 6.2.1
Sederhanakan setiap suku.
Langkah 6.2.1.1
Naikkan menjadi pangkat .
Langkah 6.2.1.2
Kalikan dengan .
Langkah 6.2.1.3
Kalikan dengan .
Langkah 6.2.2
Sederhanakan dengan mengurangkan bilangan.
Langkah 6.2.2.1
Kurangi dengan .
Langkah 6.2.2.2
Kurangi dengan .
Langkah 6.2.3
Jawaban akhirnya adalah .
Langkah 6.3
Pada , turunan kedua adalah . Karena ini negatif, turunan kedua menurun pada interval
Menurun pada karena
Menurun pada karena
Langkah 7
Langkah 7.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 7.2
Sederhanakan hasilnya.
Langkah 7.2.1
Sederhanakan setiap suku.
Langkah 7.2.1.1
Naikkan menjadi pangkat .
Langkah 7.2.1.2
Kalikan dengan .
Langkah 7.2.1.3
Kalikan dengan .
Langkah 7.2.2
Sederhanakan dengan menambahkan dan mengurangkan.
Langkah 7.2.2.1
Tambahkan dan .
Langkah 7.2.2.2
Kurangi dengan .
Langkah 7.2.3
Jawaban akhirnya adalah .
Langkah 7.3
Pada , turunan keduanya adalah . Karena ini positif, turunan keduanya meningkat pada interval .
Meningkat pada karena
Meningkat pada karena
Langkah 8
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection points in this case are .
Langkah 9