Masukkan soal...
Kalkulus Contoh
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Langkah 2.1
Tentukan turunan pertamanya.
Langkah 2.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.1.2
Evaluasi .
Langkah 2.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.1.2.3
Gabungkan dan .
Langkah 2.1.2.4
Gabungkan dan .
Langkah 2.1.2.5
Hapus faktor persekutuan dari dan .
Langkah 2.1.2.5.1
Faktorkan dari .
Langkah 2.1.2.5.2
Batalkan faktor persekutuan.
Langkah 2.1.2.5.2.1
Faktorkan dari .
Langkah 2.1.2.5.2.2
Batalkan faktor persekutuan.
Langkah 2.1.2.5.2.3
Tulis kembali pernyataannya.
Langkah 2.1.3
Evaluasi .
Langkah 2.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.1.3.3
Kalikan dengan .
Langkah 2.2
Tentukan turunan keduanya.
Langkah 2.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.2.2
Evaluasi .
Langkah 2.2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.2.3
Gabungkan dan .
Langkah 2.2.2.4
Gabungkan dan .
Langkah 2.2.3
Evaluasi .
Langkah 2.2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.3.3
Kalikan dengan .
Langkah 2.3
Turunan kedua dari terhadap adalah .
Langkah 3
Langkah 3.1
Atur turunan keduanya sama dengan .
Langkah 3.2
Tambahkan ke kedua sisi persamaan.
Langkah 3.3
Kalikan kedua sisi persamaan dengan .
Langkah 3.4
Sederhanakan kedua sisi dari persamaan tersebut.
Langkah 3.4.1
Sederhanakan sisi kirinya.
Langkah 3.4.1.1
Sederhanakan .
Langkah 3.4.1.1.1
Gabungkan.
Langkah 3.4.1.1.2
Batalkan faktor persekutuan dari .
Langkah 3.4.1.1.2.1
Batalkan faktor persekutuan.
Langkah 3.4.1.1.2.2
Tulis kembali pernyataannya.
Langkah 3.4.1.1.3
Batalkan faktor persekutuan dari .
Langkah 3.4.1.1.3.1
Batalkan faktor persekutuan.
Langkah 3.4.1.1.3.2
Bagilah dengan .
Langkah 3.4.2
Sederhanakan sisi kanannya.
Langkah 3.4.2.1
Sederhanakan .
Langkah 3.4.2.1.1
Batalkan faktor persekutuan dari .
Langkah 3.4.2.1.1.1
Faktorkan dari .
Langkah 3.4.2.1.1.2
Batalkan faktor persekutuan.
Langkah 3.4.2.1.1.3
Tulis kembali pernyataannya.
Langkah 3.4.2.1.2
Kalikan dengan .
Langkah 3.5
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 3.6
Sederhanakan .
Langkah 3.6.1
Tulis kembali sebagai .
Langkah 3.6.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 3.7
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 3.7.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 3.7.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 3.7.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 4
Langkah 4.1
Substitusikan dalam untuk menemukan nilai dari .
Langkah 4.1.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 4.1.2
Sederhanakan hasilnya.
Langkah 4.1.2.1
Sederhanakan setiap suku.
Langkah 4.1.2.1.1
Naikkan menjadi pangkat .
Langkah 4.1.2.1.2
Batalkan faktor persekutuan dari .
Langkah 4.1.2.1.2.1
Faktorkan dari .
Langkah 4.1.2.1.2.2
Batalkan faktor persekutuan.
Langkah 4.1.2.1.2.3
Tulis kembali pernyataannya.
Langkah 4.1.2.1.3
Naikkan menjadi pangkat .
Langkah 4.1.2.1.4
Kalikan dengan .
Langkah 4.1.2.2
Kurangi dengan .
Langkah 4.1.2.3
Jawaban akhirnya adalah .
Langkah 4.2
Titiknya yang ditemukan dengan mensubsitusi dalam adalah . Titik ini dapat menjadi titik belok.
Langkah 4.3
Substitusikan dalam untuk menemukan nilai dari .
Langkah 4.3.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 4.3.2
Sederhanakan hasilnya.
Langkah 4.3.2.1
Sederhanakan setiap suku.
Langkah 4.3.2.1.1
Naikkan menjadi pangkat .
Langkah 4.3.2.1.2
Batalkan faktor persekutuan dari .
Langkah 4.3.2.1.2.1
Faktorkan dari .
Langkah 4.3.2.1.2.2
Batalkan faktor persekutuan.
Langkah 4.3.2.1.2.3
Tulis kembali pernyataannya.
Langkah 4.3.2.1.3
Naikkan menjadi pangkat .
Langkah 4.3.2.1.4
Kalikan dengan .
Langkah 4.3.2.2
Kurangi dengan .
Langkah 4.3.2.3
Jawaban akhirnya adalah .
Langkah 4.4
Titiknya yang ditemukan dengan mensubsitusi dalam adalah . Titik ini dapat menjadi titik belok.
Langkah 4.5
Tentukan titik-titik yang dapat menjadi titik belok.
Langkah 5
Pisahkan menjadi interval di sekitar titik-titik yang dapat berpotensi menjadi titik-titik belok.
Langkah 6
Langkah 6.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 6.2
Sederhanakan hasilnya.
Langkah 6.2.1
Sederhanakan setiap suku.
Langkah 6.2.1.1
Naikkan menjadi pangkat .
Langkah 6.2.1.2
Kalikan dengan .
Langkah 6.2.1.3
Bagilah dengan .
Langkah 6.2.2
Kurangi dengan .
Langkah 6.2.3
Jawaban akhirnya adalah .
Langkah 6.3
Pada , turunan keduanya adalah . Karena ini positif, turunan keduanya meningkat pada interval .
Meningkat pada karena
Meningkat pada karena
Langkah 7
Langkah 7.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 7.2
Sederhanakan hasilnya.
Langkah 7.2.1
Sederhanakan setiap suku.
Langkah 7.2.1.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 7.2.1.2
Kalikan dengan .
Langkah 7.2.1.3
Bagilah dengan .
Langkah 7.2.2
Kurangi dengan .
Langkah 7.2.3
Jawaban akhirnya adalah .
Langkah 7.3
Pada , turunan kedua adalah . Karena ini negatif, turunan kedua menurun pada interval
Menurun pada karena
Menurun pada karena
Langkah 8
Langkah 8.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 8.2
Sederhanakan hasilnya.
Langkah 8.2.1
Sederhanakan setiap suku.
Langkah 8.2.1.1
Naikkan menjadi pangkat .
Langkah 8.2.1.2
Kalikan dengan .
Langkah 8.2.1.3
Bagilah dengan .
Langkah 8.2.2
Kurangi dengan .
Langkah 8.2.3
Jawaban akhirnya adalah .
Langkah 8.3
Pada , turunan keduanya adalah . Karena ini positif, turunan keduanya meningkat pada interval .
Meningkat pada karena
Meningkat pada karena
Langkah 9
Titik belok adalah sebuah titik pada kurva di mana kecekungan berubah dari positif ke negatif atau dari negatif ke positif. Titik-titik belok dalam kasus ini adalah .
Langkah 10