Kalkulus Contoh

Tentukan di mana Fungsinya Meningkat/Menurun Menggunakan Turunan f(x) = square root of x^2+5
Langkah 1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Gunakan untuk menuliskan kembali sebagai .
Langkah 1.1.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2.3
Ganti semua kemunculan dengan .
Langkah 1.1.3
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 1.1.4
Gabungkan dan .
Langkah 1.1.5
Gabungkan pembilang dari penyebut persekutuan.
Langkah 1.1.6
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.6.1
Kalikan dengan .
Langkah 1.1.6.2
Kurangi dengan .
Langkah 1.1.7
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.7.1
Pindahkan tanda negatif di depan pecahan.
Langkah 1.1.7.2
Gabungkan dan .
Langkah 1.1.7.3
Pindahkan menjadi penyebut menggunakan aturan eksponen negatif .
Langkah 1.1.8
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 1.1.9
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.10
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.11
Sederhanakan suku-suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.11.1
Tambahkan dan .
Langkah 1.1.11.2
Gabungkan dan .
Langkah 1.1.11.3
Gabungkan dan .
Langkah 1.1.11.4
Batalkan faktor persekutuan.
Langkah 1.1.11.5
Tulis kembali pernyataannya.
Langkah 1.2
Turunan pertama dari terhadap adalah .
Langkah 2
Buat turunan pertamanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Buat turunan pertamanya agar sama dengan .
Langkah 2.2
Atur agar pembilangnya sama dengan nol.
Langkah 3
Nilai-nilai yang membuat turunannya sama dengan adalah .
Langkah 4
Setelah mencari titik yang membuat turunan sama dengan atau tidak terdefinisi, interval untuk memeriksa di mana meningkat dan di mana menurun yaitu .
Langkah 5
Substitusikan nilai dari interval ke dalam turunannya untuk menentukan apakah fungsinya naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 5.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1.1
Naikkan menjadi pangkat .
Langkah 5.2.1.2
Tambahkan dan .
Langkah 5.2.2
Pindahkan tanda negatif di depan pecahan.
Langkah 5.2.3
Jawaban akhirnya adalah .
Langkah 5.3
Pada , turunannya adalah . Karena ini negatif, fungsinya menurun pada .
Menurun pada karena
Menurun pada karena
Langkah 6
Substitusikan nilai dari interval ke dalam turunannya untuk menentukan apakah fungsinya naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 6.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 6.2.1.2
Tambahkan dan .
Langkah 6.2.2
Jawaban akhirnya adalah .
Langkah 6.3
Pada , turunannya adalah . Karena ini positif, fungsinya meningkat pada .
Meningkat pada karena
Meningkat pada karena
Langkah 7
Sebutkan interval-interval yang fungsinya naik dan turun.
Meningkat pada:
Menurun pada:
Langkah 8