Kalkulus Contoh

Tentukan di mana Fungsinya Meningkat/Menurun Menggunakan Turunan f(x)=(x^3)/(x^2-4)
Langkah 1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Diferensialkan menggunakan Kaidah Hasil Bagi yang menyatakan bahwa adalah di mana dan .
Langkah 1.1.2
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.1
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2.2
Pindahkan ke sebelah kiri .
Langkah 1.1.2.3
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 1.1.2.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.2.6
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.6.1
Tambahkan dan .
Langkah 1.1.2.6.2
Kalikan dengan .
Langkah 1.1.3
Naikkan menjadi pangkat .
Langkah 1.1.4
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 1.1.5
Tambahkan dan .
Langkah 1.1.6
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.6.1
Terapkan sifat distributif.
Langkah 1.1.6.2
Terapkan sifat distributif.
Langkah 1.1.6.3
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.6.3.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.6.3.1.1
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.6.3.1.1.1
Pindahkan .
Langkah 1.1.6.3.1.1.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 1.1.6.3.1.1.3
Tambahkan dan .
Langkah 1.1.6.3.1.2
Kalikan dengan .
Langkah 1.1.6.3.2
Kurangi dengan .
Langkah 1.1.6.4
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.6.4.1
Faktorkan dari .
Langkah 1.1.6.4.2
Faktorkan dari .
Langkah 1.1.6.4.3
Faktorkan dari .
Langkah 1.1.6.5
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.6.5.1
Tulis kembali sebagai .
Langkah 1.1.6.5.2
Karena kedua suku merupakan kuadrat sempurna, faktorkan menggunakan rumus beda pangkat dua, di mana dan .
Langkah 1.1.6.5.3
Terapkan kaidah hasil kali ke .
Langkah 1.2
Turunan pertama dari terhadap adalah .
Langkah 2
Buat turunan pertamanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Buat turunan pertamanya agar sama dengan .
Langkah 2.2
Atur agar pembilangnya sama dengan nol.
Langkah 2.3
Selesaikan persamaan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 2.3.2
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.2.1
Atur sama dengan .
Langkah 2.3.2.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.2.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Langkah 2.3.2.2.2
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.2.2.2.1
Tulis kembali sebagai .
Langkah 2.3.2.2.2.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 2.3.2.2.2.3
Tambah atau kurang adalah .
Langkah 2.3.3
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.3.1
Atur sama dengan .
Langkah 2.3.3.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.3.2.1
Tambahkan ke kedua sisi persamaan.
Langkah 2.3.3.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Langkah 2.3.3.2.3
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.3.2.3.1
Tulis kembali sebagai .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.3.2.3.1.1
Faktorkan dari .
Langkah 2.3.3.2.3.1.2
Tulis kembali sebagai .
Langkah 2.3.3.2.3.2
Mengeluarkan suku-suku dari bawah akar.
Langkah 2.3.3.2.4
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.3.2.4.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 2.3.3.2.4.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 2.3.3.2.4.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 2.3.4
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 3
Nilai-nilai yang membuat turunannya sama dengan adalah .
Langkah 4
Tentukan di mana turunannya tidak terdefinisi.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Atur penyebut dalam agar sama dengan untuk menentukan di mana pernyataannya tidak terdefinisi.
Langkah 4.2
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 4.2.2
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.2.1
Atur sama dengan .
Langkah 4.2.2.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.2.2.1
Atur agar sama dengan .
Langkah 4.2.2.2.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 4.2.3
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.3.1
Atur sama dengan .
Langkah 4.2.3.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.3.2.1
Atur agar sama dengan .
Langkah 4.2.3.2.2
Tambahkan ke kedua sisi persamaan.
Langkah 4.2.4
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 4.3
Persamaan tidak terdefinisi di mana penyebutnya sama dengan , argumen dari akar kuadratnya lebih kecil dari , atau argumen dari logaritmanya lebih kecil dari atau sama dengan .
Langkah 5
Pisahkan menjadi interval terpisah di sekitar nilai yang menjadikan turunan atau tidak terdefinisi.
Langkah 6
Substitusikan nilai dari interval ke dalam turunannya untuk menentukan apakah fungsinya naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 6.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1.1
Naikkan menjadi pangkat .
Langkah 6.2.1.2
Kurangi dengan .
Langkah 6.2.1.3
Naikkan menjadi pangkat .
Langkah 6.2.2
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.2.1
Tambahkan dan .
Langkah 6.2.2.2
Kurangi dengan .
Langkah 6.2.2.3
Naikkan menjadi pangkat .
Langkah 6.2.2.4
Naikkan menjadi pangkat .
Langkah 6.2.3
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.3.1
Kalikan dengan .
Langkah 6.2.3.2
Kalikan dengan .
Langkah 6.2.3.3
Bagilah dengan .
Langkah 6.2.4
Jawaban akhirnya adalah .
Langkah 6.3
Pada , turunannya adalah . Karena ini positif, fungsinya meningkat pada .
Meningkat pada karena
Meningkat pada karena
Langkah 7
Substitusikan nilai dari interval ke dalam turunannya untuk menentukan apakah fungsinya naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 7.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.1
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.1.1
Naikkan menjadi pangkat .
Langkah 7.2.1.2
Kurangi dengan .
Langkah 7.2.1.3
Naikkan menjadi pangkat .
Langkah 7.2.2
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.2.1
Tambahkan dan .
Langkah 7.2.2.2
Kurangi dengan .
Langkah 7.2.2.3
Naikkan menjadi pangkat .
Langkah 7.2.2.4
Naikkan menjadi pangkat .
Langkah 7.2.3
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.3.1
Kalikan dengan .
Langkah 7.2.3.2
Kalikan dengan .
Langkah 7.2.3.3
Bagilah dengan .
Langkah 7.2.4
Jawaban akhirnya adalah .
Langkah 7.3
Pada , turunannya adalah . Karena ini negatif, fungsinya menurun pada .
Menurun pada karena
Menurun pada karena
Langkah 8
Substitusikan nilai dari interval ke dalam turunannya untuk menentukan apakah fungsinya naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 8.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 8.2.1
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 8.2.1.1
Naikkan menjadi pangkat .
Langkah 8.2.1.2
Kurangi dengan .
Langkah 8.2.1.3
Naikkan menjadi pangkat .
Langkah 8.2.1.4
Kalikan dengan .
Langkah 8.2.2
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 8.2.2.1
Tambahkan dan .
Langkah 8.2.2.2
Kurangi dengan .
Langkah 8.2.2.3
Satu dipangkat berapa pun sama dengan satu.
Langkah 8.2.2.4
Naikkan menjadi pangkat .
Langkah 8.2.2.5
Kalikan dengan .
Langkah 8.2.3
Pindahkan tanda negatif di depan pecahan.
Langkah 8.2.4
Jawaban akhirnya adalah .
Langkah 8.3
Pada , turunannya adalah . Karena ini negatif, fungsinya menurun pada .
Menurun pada karena
Menurun pada karena
Langkah 9
Substitusikan nilai dari interval ke dalam turunannya untuk menentukan apakah fungsinya naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 9.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 9.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 9.2.1
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 9.2.1.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 9.2.1.2
Kurangi dengan .
Langkah 9.2.1.3
Satu dipangkat berapa pun sama dengan satu.
Langkah 9.2.1.4
Kalikan dengan .
Langkah 9.2.2
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 9.2.2.1
Tambahkan dan .
Langkah 9.2.2.2
Kurangi dengan .
Langkah 9.2.2.3
Naikkan menjadi pangkat .
Langkah 9.2.2.4
Naikkan menjadi pangkat .
Langkah 9.2.3
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 9.2.3.1
Kalikan dengan .
Langkah 9.2.3.2
Pindahkan tanda negatif di depan pecahan.
Langkah 9.2.4
Jawaban akhirnya adalah .
Langkah 9.3
Pada , turunannya adalah . Karena ini negatif, fungsinya menurun pada .
Menurun pada karena
Menurun pada karena
Langkah 10
Substitusikan nilai dari interval ke dalam turunannya untuk menentukan apakah fungsinya naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 10.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 10.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 10.2.1
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 10.2.1.1
Naikkan menjadi pangkat .
Langkah 10.2.1.2
Kurangi dengan .
Langkah 10.2.1.3
Naikkan menjadi pangkat .
Langkah 10.2.2
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 10.2.2.1
Tambahkan dan .
Langkah 10.2.2.2
Kurangi dengan .
Langkah 10.2.2.3
Naikkan menjadi pangkat .
Langkah 10.2.2.4
Naikkan menjadi pangkat .
Langkah 10.2.3
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 10.2.3.1
Kalikan dengan .
Langkah 10.2.3.2
Kalikan dengan .
Langkah 10.2.3.3
Bagilah dengan .
Langkah 10.2.4
Jawaban akhirnya adalah .
Langkah 10.3
Pada , turunannya adalah . Karena ini negatif, fungsinya menurun pada .
Menurun pada karena
Menurun pada karena
Langkah 11
Substitusikan nilai dari interval ke dalam turunannya untuk menentukan apakah fungsinya naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 11.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 11.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 11.2.1
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 11.2.1.1
Naikkan menjadi pangkat .
Langkah 11.2.1.2
Kurangi dengan .
Langkah 11.2.1.3
Naikkan menjadi pangkat .
Langkah 11.2.2
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 11.2.2.1
Tambahkan dan .
Langkah 11.2.2.2
Kurangi dengan .
Langkah 11.2.2.3
Naikkan menjadi pangkat .
Langkah 11.2.2.4
Naikkan menjadi pangkat .
Langkah 11.2.3
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 11.2.3.1
Kalikan dengan .
Langkah 11.2.3.2
Kalikan dengan .
Langkah 11.2.3.3
Bagilah dengan .
Langkah 11.2.4
Jawaban akhirnya adalah .
Langkah 11.3
Pada , turunannya adalah . Karena ini positif, fungsinya meningkat pada .
Meningkat pada karena
Meningkat pada karena
Langkah 12
Sebutkan interval-interval yang fungsinya naik dan turun.
Meningkat pada:
Menurun pada:
Langkah 13