Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Tentukan turunan pertamanya.
Langkah 1.1.1
Diferensialkan menggunakan Kaidah Hasil Bagi yang menyatakan bahwa adalah di mana dan .
Langkah 1.1.2
Diferensialkan.
Langkah 1.1.2.1
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2.2
Pindahkan ke sebelah kiri .
Langkah 1.1.2.3
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 1.1.2.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.2.6
Sederhanakan pernyataannya.
Langkah 1.1.2.6.1
Tambahkan dan .
Langkah 1.1.2.6.2
Kalikan dengan .
Langkah 1.1.3
Naikkan menjadi pangkat .
Langkah 1.1.4
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 1.1.5
Tambahkan dan .
Langkah 1.1.6
Sederhanakan.
Langkah 1.1.6.1
Terapkan sifat distributif.
Langkah 1.1.6.2
Terapkan sifat distributif.
Langkah 1.1.6.3
Sederhanakan pembilangnya.
Langkah 1.1.6.3.1
Sederhanakan setiap suku.
Langkah 1.1.6.3.1.1
Kalikan dengan dengan menambahkan eksponennya.
Langkah 1.1.6.3.1.1.1
Pindahkan .
Langkah 1.1.6.3.1.1.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 1.1.6.3.1.1.3
Tambahkan dan .
Langkah 1.1.6.3.1.2
Kalikan dengan .
Langkah 1.1.6.3.2
Kurangi dengan .
Langkah 1.1.6.4
Faktorkan dari .
Langkah 1.1.6.4.1
Faktorkan dari .
Langkah 1.1.6.4.2
Faktorkan dari .
Langkah 1.1.6.4.3
Faktorkan dari .
Langkah 1.1.6.5
Sederhanakan penyebutnya.
Langkah 1.1.6.5.1
Tulis kembali sebagai .
Langkah 1.1.6.5.2
Karena kedua suku merupakan kuadrat sempurna, faktorkan menggunakan rumus beda pangkat dua, di mana dan .
Langkah 1.1.6.5.3
Terapkan kaidah hasil kali ke .
Langkah 1.2
Turunan pertama dari terhadap adalah .
Langkah 2
Langkah 2.1
Buat turunan pertamanya agar sama dengan .
Langkah 2.2
Atur agar pembilangnya sama dengan nol.
Langkah 2.3
Selesaikan persamaan untuk .
Langkah 2.3.1
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 2.3.2
Atur agar sama dengan dan selesaikan .
Langkah 2.3.2.1
Atur sama dengan .
Langkah 2.3.2.2
Selesaikan untuk .
Langkah 2.3.2.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Langkah 2.3.2.2.2
Sederhanakan .
Langkah 2.3.2.2.2.1
Tulis kembali sebagai .
Langkah 2.3.2.2.2.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 2.3.2.2.2.3
Tambah atau kurang adalah .
Langkah 2.3.3
Atur agar sama dengan dan selesaikan .
Langkah 2.3.3.1
Atur sama dengan .
Langkah 2.3.3.2
Selesaikan untuk .
Langkah 2.3.3.2.1
Tambahkan ke kedua sisi persamaan.
Langkah 2.3.3.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Langkah 2.3.3.2.3
Sederhanakan .
Langkah 2.3.3.2.3.1
Tulis kembali sebagai .
Langkah 2.3.3.2.3.1.1
Faktorkan dari .
Langkah 2.3.3.2.3.1.2
Tulis kembali sebagai .
Langkah 2.3.3.2.3.2
Mengeluarkan suku-suku dari bawah akar.
Langkah 2.3.3.2.4
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 2.3.3.2.4.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 2.3.3.2.4.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 2.3.3.2.4.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 2.3.4
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 3
Nilai-nilai yang membuat turunannya sama dengan adalah .
Langkah 4
Langkah 4.1
Atur penyebut dalam agar sama dengan untuk menentukan di mana pernyataannya tidak terdefinisi.
Langkah 4.2
Selesaikan .
Langkah 4.2.1
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 4.2.2
Atur agar sama dengan dan selesaikan .
Langkah 4.2.2.1
Atur sama dengan .
Langkah 4.2.2.2
Selesaikan untuk .
Langkah 4.2.2.2.1
Atur agar sama dengan .
Langkah 4.2.2.2.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 4.2.3
Atur agar sama dengan dan selesaikan .
Langkah 4.2.3.1
Atur sama dengan .
Langkah 4.2.3.2
Selesaikan untuk .
Langkah 4.2.3.2.1
Atur agar sama dengan .
Langkah 4.2.3.2.2
Tambahkan ke kedua sisi persamaan.
Langkah 4.2.4
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 4.3
Persamaan tidak terdefinisi di mana penyebutnya sama dengan , argumen dari akar kuadratnya lebih kecil dari , atau argumen dari logaritmanya lebih kecil dari atau sama dengan .
Langkah 5
Pisahkan menjadi interval terpisah di sekitar nilai yang menjadikan turunan atau tidak terdefinisi.
Langkah 6
Langkah 6.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 6.2
Sederhanakan hasilnya.
Langkah 6.2.1
Sederhanakan pembilangnya.
Langkah 6.2.1.1
Naikkan menjadi pangkat .
Langkah 6.2.1.2
Kurangi dengan .
Langkah 6.2.1.3
Naikkan menjadi pangkat .
Langkah 6.2.2
Sederhanakan penyebutnya.
Langkah 6.2.2.1
Tambahkan dan .
Langkah 6.2.2.2
Kurangi dengan .
Langkah 6.2.2.3
Naikkan menjadi pangkat .
Langkah 6.2.2.4
Naikkan menjadi pangkat .
Langkah 6.2.3
Sederhanakan pernyataannya.
Langkah 6.2.3.1
Kalikan dengan .
Langkah 6.2.3.2
Kalikan dengan .
Langkah 6.2.3.3
Bagilah dengan .
Langkah 6.2.4
Jawaban akhirnya adalah .
Langkah 6.3
Pada , turunannya adalah . Karena ini positif, fungsinya meningkat pada .
Meningkat pada karena
Meningkat pada karena
Langkah 7
Langkah 7.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 7.2
Sederhanakan hasilnya.
Langkah 7.2.1
Sederhanakan pembilangnya.
Langkah 7.2.1.1
Naikkan menjadi pangkat .
Langkah 7.2.1.2
Kurangi dengan .
Langkah 7.2.1.3
Naikkan menjadi pangkat .
Langkah 7.2.2
Sederhanakan penyebutnya.
Langkah 7.2.2.1
Tambahkan dan .
Langkah 7.2.2.2
Kurangi dengan .
Langkah 7.2.2.3
Naikkan menjadi pangkat .
Langkah 7.2.2.4
Naikkan menjadi pangkat .
Langkah 7.2.3
Sederhanakan pernyataannya.
Langkah 7.2.3.1
Kalikan dengan .
Langkah 7.2.3.2
Kalikan dengan .
Langkah 7.2.3.3
Bagilah dengan .
Langkah 7.2.4
Jawaban akhirnya adalah .
Langkah 7.3
Pada , turunannya adalah . Karena ini negatif, fungsinya menurun pada .
Menurun pada karena
Menurun pada karena
Langkah 8
Langkah 8.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 8.2
Sederhanakan hasilnya.
Langkah 8.2.1
Sederhanakan pembilangnya.
Langkah 8.2.1.1
Naikkan menjadi pangkat .
Langkah 8.2.1.2
Kurangi dengan .
Langkah 8.2.1.3
Naikkan menjadi pangkat .
Langkah 8.2.1.4
Kalikan dengan .
Langkah 8.2.2
Sederhanakan penyebutnya.
Langkah 8.2.2.1
Tambahkan dan .
Langkah 8.2.2.2
Kurangi dengan .
Langkah 8.2.2.3
Satu dipangkat berapa pun sama dengan satu.
Langkah 8.2.2.4
Naikkan menjadi pangkat .
Langkah 8.2.2.5
Kalikan dengan .
Langkah 8.2.3
Pindahkan tanda negatif di depan pecahan.
Langkah 8.2.4
Jawaban akhirnya adalah .
Langkah 8.3
Pada , turunannya adalah . Karena ini negatif, fungsinya menurun pada .
Menurun pada karena
Menurun pada karena
Langkah 9
Langkah 9.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 9.2
Sederhanakan hasilnya.
Langkah 9.2.1
Sederhanakan pembilangnya.
Langkah 9.2.1.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 9.2.1.2
Kurangi dengan .
Langkah 9.2.1.3
Satu dipangkat berapa pun sama dengan satu.
Langkah 9.2.1.4
Kalikan dengan .
Langkah 9.2.2
Sederhanakan penyebutnya.
Langkah 9.2.2.1
Tambahkan dan .
Langkah 9.2.2.2
Kurangi dengan .
Langkah 9.2.2.3
Naikkan menjadi pangkat .
Langkah 9.2.2.4
Naikkan menjadi pangkat .
Langkah 9.2.3
Sederhanakan pernyataannya.
Langkah 9.2.3.1
Kalikan dengan .
Langkah 9.2.3.2
Pindahkan tanda negatif di depan pecahan.
Langkah 9.2.4
Jawaban akhirnya adalah .
Langkah 9.3
Pada , turunannya adalah . Karena ini negatif, fungsinya menurun pada .
Menurun pada karena
Menurun pada karena
Langkah 10
Langkah 10.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 10.2
Sederhanakan hasilnya.
Langkah 10.2.1
Sederhanakan pembilangnya.
Langkah 10.2.1.1
Naikkan menjadi pangkat .
Langkah 10.2.1.2
Kurangi dengan .
Langkah 10.2.1.3
Naikkan menjadi pangkat .
Langkah 10.2.2
Sederhanakan penyebutnya.
Langkah 10.2.2.1
Tambahkan dan .
Langkah 10.2.2.2
Kurangi dengan .
Langkah 10.2.2.3
Naikkan menjadi pangkat .
Langkah 10.2.2.4
Naikkan menjadi pangkat .
Langkah 10.2.3
Sederhanakan pernyataannya.
Langkah 10.2.3.1
Kalikan dengan .
Langkah 10.2.3.2
Kalikan dengan .
Langkah 10.2.3.3
Bagilah dengan .
Langkah 10.2.4
Jawaban akhirnya adalah .
Langkah 10.3
Pada , turunannya adalah . Karena ini negatif, fungsinya menurun pada .
Menurun pada karena
Menurun pada karena
Langkah 11
Langkah 11.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 11.2
Sederhanakan hasilnya.
Langkah 11.2.1
Sederhanakan pembilangnya.
Langkah 11.2.1.1
Naikkan menjadi pangkat .
Langkah 11.2.1.2
Kurangi dengan .
Langkah 11.2.1.3
Naikkan menjadi pangkat .
Langkah 11.2.2
Sederhanakan penyebutnya.
Langkah 11.2.2.1
Tambahkan dan .
Langkah 11.2.2.2
Kurangi dengan .
Langkah 11.2.2.3
Naikkan menjadi pangkat .
Langkah 11.2.2.4
Naikkan menjadi pangkat .
Langkah 11.2.3
Sederhanakan pernyataannya.
Langkah 11.2.3.1
Kalikan dengan .
Langkah 11.2.3.2
Kalikan dengan .
Langkah 11.2.3.3
Bagilah dengan .
Langkah 11.2.4
Jawaban akhirnya adalah .
Langkah 11.3
Pada , turunannya adalah . Karena ini positif, fungsinya meningkat pada .
Meningkat pada karena
Meningkat pada karena
Langkah 12
Sebutkan interval-interval yang fungsinya naik dan turun.
Meningkat pada:
Menurun pada:
Langkah 13