Kalkulus Contoh

Tentukan di mana Fungsinya Meningkat/Menurun Menggunakan Turunan f(x)=(2x)/(x^2-36)
Langkah 1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.2
Diferensialkan menggunakan Kaidah Hasil Bagi yang menyatakan bahwa adalah di mana dan .
Langkah 1.1.3
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.1
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.3.2
Kalikan dengan .
Langkah 1.1.3.3
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.1.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.3.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.3.6
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.6.1
Tambahkan dan .
Langkah 1.1.3.6.2
Kalikan dengan .
Langkah 1.1.4
Naikkan menjadi pangkat .
Langkah 1.1.5
Naikkan menjadi pangkat .
Langkah 1.1.6
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 1.1.7
Tambahkan dan .
Langkah 1.1.8
Kurangi dengan .
Langkah 1.1.9
Gabungkan dan .
Langkah 1.1.10
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.10.1
Terapkan sifat distributif.
Langkah 1.1.10.2
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.10.2.1
Kalikan dengan .
Langkah 1.1.10.2.2
Kalikan dengan .
Langkah 1.2
Turunan pertama dari terhadap adalah .
Langkah 2
Buat turunan pertamanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Buat turunan pertamanya agar sama dengan .
Langkah 2.2
Atur agar pembilangnya sama dengan nol.
Langkah 2.3
Selesaikan persamaan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Tambahkan ke kedua sisi persamaan.
Langkah 2.3.2
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.2.1
Bagilah setiap suku di dengan .
Langkah 2.3.2.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.2.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.2.2.1.1
Batalkan faktor persekutuan.
Langkah 2.3.2.2.1.2
Bagilah dengan .
Langkah 2.3.2.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.2.3.1
Bagilah dengan .
Langkah 2.3.3
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 2.3.4
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.4.1
Tulis kembali sebagai .
Langkah 2.3.4.2
Tulis kembali sebagai .
Langkah 2.3.4.3
Tulis kembali sebagai .
Langkah 2.3.4.4
Tulis kembali sebagai .
Langkah 2.3.4.5
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 2.3.4.6
Pindahkan ke sebelah kiri .
Langkah 2.3.5
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.5.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 2.3.5.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 2.3.5.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 3
Tidak ada nilai dari di domain soal awal yang nilai-turunannya adalah atau tidak terdefinisi.
Tidak ditemukan titik kritis
Langkah 4
Tentukan di mana turunannya tidak terdefinisi.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Atur penyebut dalam agar sama dengan untuk menentukan di mana pernyataannya tidak terdefinisi.
Langkah 4.2
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1
Faktorkan sisi kiri persamaannya.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1.1
Tulis kembali sebagai .
Langkah 4.2.1.2
Karena kedua suku merupakan kuadrat sempurna, faktorkan menggunakan rumus beda pangkat dua, di mana dan .
Langkah 4.2.1.3
Terapkan kaidah hasil kali ke .
Langkah 4.2.2
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 4.2.3
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.3.1
Atur sama dengan .
Langkah 4.2.3.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.3.2.1
Atur agar sama dengan .
Langkah 4.2.3.2.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 4.2.4
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.4.1
Atur sama dengan .
Langkah 4.2.4.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.4.2.1
Atur agar sama dengan .
Langkah 4.2.4.2.2
Tambahkan ke kedua sisi persamaan.
Langkah 4.2.5
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 4.3
Persamaan tidak terdefinisi di mana penyebutnya sama dengan , argumen dari akar kuadratnya lebih kecil dari , atau argumen dari logaritmanya lebih kecil dari atau sama dengan .
Langkah 5
Pisahkan menjadi interval terpisah di sekitar nilai yang menjadikan turunan atau tidak terdefinisi.
Langkah 6
Substitusikan nilai dari interval ke dalam turunannya untuk menentukan apakah fungsinya naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 6.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1.1
Naikkan menjadi pangkat .
Langkah 6.2.1.2
Kalikan dengan .
Langkah 6.2.1.3
Kurangi dengan .
Langkah 6.2.2
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.2.1
Naikkan menjadi pangkat .
Langkah 6.2.2.2
Kurangi dengan .
Langkah 6.2.2.3
Naikkan menjadi pangkat .
Langkah 6.2.3
Pindahkan tanda negatif di depan pecahan.
Langkah 6.2.4
Jawaban akhirnya adalah .
Langkah 6.3
Pada , turunannya adalah . Karena ini negatif, fungsinya menurun pada .
Menurun pada karena
Menurun pada karena
Langkah 7
Substitusikan nilai dari interval ke dalam turunannya untuk menentukan apakah fungsinya naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 7.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.1
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.1.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 7.2.1.2
Kalikan dengan .
Langkah 7.2.1.3
Kurangi dengan .
Langkah 7.2.2
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.2.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 7.2.2.2
Kurangi dengan .
Langkah 7.2.2.3
Naikkan menjadi pangkat .
Langkah 7.2.3
Kurangi pernyataan tersebut dengan menghapus faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.3.1
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 7.2.3.1.1
Faktorkan dari .
Langkah 7.2.3.1.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.3.1.2.1
Faktorkan dari .
Langkah 7.2.3.1.2.2
Batalkan faktor persekutuan.
Langkah 7.2.3.1.2.3
Tulis kembali pernyataannya.
Langkah 7.2.3.2
Pindahkan tanda negatif di depan pecahan.
Langkah 7.2.4
Jawaban akhirnya adalah .
Langkah 7.3
Pada , turunannya adalah . Karena ini negatif, fungsinya menurun pada .
Menurun pada karena
Menurun pada karena
Langkah 8
Substitusikan nilai dari interval ke dalam turunannya untuk menentukan apakah fungsinya naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 8.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 8.2.1
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 8.2.1.1
Naikkan menjadi pangkat .
Langkah 8.2.1.2
Kalikan dengan .
Langkah 8.2.1.3
Kurangi dengan .
Langkah 8.2.2
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 8.2.2.1
Naikkan menjadi pangkat .
Langkah 8.2.2.2
Kurangi dengan .
Langkah 8.2.2.3
Naikkan menjadi pangkat .
Langkah 8.2.3
Pindahkan tanda negatif di depan pecahan.
Langkah 8.2.4
Jawaban akhirnya adalah .
Langkah 8.3
Pada , turunannya adalah . Karena ini negatif, fungsinya menurun pada .
Menurun pada karena
Menurun pada karena
Langkah 9
Sebutkan interval-interval yang fungsinya naik dan turun.
Menurun pada:
Langkah 10