Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Tentukan turunan pertamanya.
Langkah 1.1.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.2
Diferensialkan menggunakan Kaidah Hasil Bagi yang menyatakan bahwa adalah di mana dan .
Langkah 1.1.3
Diferensialkan.
Langkah 1.1.3.1
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.3.2
Kalikan dengan .
Langkah 1.1.3.3
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.1.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.3.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.3.6
Sederhanakan pernyataannya.
Langkah 1.1.3.6.1
Tambahkan dan .
Langkah 1.1.3.6.2
Kalikan dengan .
Langkah 1.1.4
Naikkan menjadi pangkat .
Langkah 1.1.5
Naikkan menjadi pangkat .
Langkah 1.1.6
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 1.1.7
Tambahkan dan .
Langkah 1.1.8
Kurangi dengan .
Langkah 1.1.9
Gabungkan dan .
Langkah 1.1.10
Sederhanakan.
Langkah 1.1.10.1
Terapkan sifat distributif.
Langkah 1.1.10.2
Sederhanakan setiap suku.
Langkah 1.1.10.2.1
Kalikan dengan .
Langkah 1.1.10.2.2
Kalikan dengan .
Langkah 1.2
Turunan pertama dari terhadap adalah .
Langkah 2
Langkah 2.1
Buat turunan pertamanya agar sama dengan .
Langkah 2.2
Atur agar pembilangnya sama dengan nol.
Langkah 2.3
Selesaikan persamaan untuk .
Langkah 2.3.1
Tambahkan ke kedua sisi persamaan.
Langkah 2.3.2
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 2.3.2.1
Bagilah setiap suku di dengan .
Langkah 2.3.2.2
Sederhanakan sisi kirinya.
Langkah 2.3.2.2.1
Batalkan faktor persekutuan dari .
Langkah 2.3.2.2.1.1
Batalkan faktor persekutuan.
Langkah 2.3.2.2.1.2
Bagilah dengan .
Langkah 2.3.2.3
Sederhanakan sisi kanannya.
Langkah 2.3.2.3.1
Bagilah dengan .
Langkah 2.3.3
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 2.3.4
Sederhanakan .
Langkah 2.3.4.1
Tulis kembali sebagai .
Langkah 2.3.4.2
Tulis kembali sebagai .
Langkah 2.3.4.3
Tulis kembali sebagai .
Langkah 2.3.4.4
Tulis kembali sebagai .
Langkah 2.3.4.5
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 2.3.4.6
Pindahkan ke sebelah kiri .
Langkah 2.3.5
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 2.3.5.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 2.3.5.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 2.3.5.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 3
Tidak ada nilai dari di domain soal awal yang nilai-turunannya adalah atau tidak terdefinisi.
Tidak ditemukan titik kritis
Langkah 4
Langkah 4.1
Atur penyebut dalam agar sama dengan untuk menentukan di mana pernyataannya tidak terdefinisi.
Langkah 4.2
Selesaikan .
Langkah 4.2.1
Faktorkan sisi kiri persamaannya.
Langkah 4.2.1.1
Tulis kembali sebagai .
Langkah 4.2.1.2
Karena kedua suku merupakan kuadrat sempurna, faktorkan menggunakan rumus beda pangkat dua, di mana dan .
Langkah 4.2.1.3
Terapkan kaidah hasil kali ke .
Langkah 4.2.2
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 4.2.3
Atur agar sama dengan dan selesaikan .
Langkah 4.2.3.1
Atur sama dengan .
Langkah 4.2.3.2
Selesaikan untuk .
Langkah 4.2.3.2.1
Atur agar sama dengan .
Langkah 4.2.3.2.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 4.2.4
Atur agar sama dengan dan selesaikan .
Langkah 4.2.4.1
Atur sama dengan .
Langkah 4.2.4.2
Selesaikan untuk .
Langkah 4.2.4.2.1
Atur agar sama dengan .
Langkah 4.2.4.2.2
Tambahkan ke kedua sisi persamaan.
Langkah 4.2.5
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 4.3
Persamaan tidak terdefinisi di mana penyebutnya sama dengan , argumen dari akar kuadratnya lebih kecil dari , atau argumen dari logaritmanya lebih kecil dari atau sama dengan .
Langkah 5
Pisahkan menjadi interval terpisah di sekitar nilai yang menjadikan turunan atau tidak terdefinisi.
Langkah 6
Langkah 6.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 6.2
Sederhanakan hasilnya.
Langkah 6.2.1
Sederhanakan pembilangnya.
Langkah 6.2.1.1
Naikkan menjadi pangkat .
Langkah 6.2.1.2
Kalikan dengan .
Langkah 6.2.1.3
Kurangi dengan .
Langkah 6.2.2
Sederhanakan penyebutnya.
Langkah 6.2.2.1
Naikkan menjadi pangkat .
Langkah 6.2.2.2
Kurangi dengan .
Langkah 6.2.2.3
Naikkan menjadi pangkat .
Langkah 6.2.3
Pindahkan tanda negatif di depan pecahan.
Langkah 6.2.4
Jawaban akhirnya adalah .
Langkah 6.3
Pada , turunannya adalah . Karena ini negatif, fungsinya menurun pada .
Menurun pada karena
Menurun pada karena
Langkah 7
Langkah 7.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 7.2
Sederhanakan hasilnya.
Langkah 7.2.1
Sederhanakan pembilangnya.
Langkah 7.2.1.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 7.2.1.2
Kalikan dengan .
Langkah 7.2.1.3
Kurangi dengan .
Langkah 7.2.2
Sederhanakan penyebutnya.
Langkah 7.2.2.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 7.2.2.2
Kurangi dengan .
Langkah 7.2.2.3
Naikkan menjadi pangkat .
Langkah 7.2.3
Kurangi pernyataan tersebut dengan menghapus faktor persekutuan.
Langkah 7.2.3.1
Hapus faktor persekutuan dari dan .
Langkah 7.2.3.1.1
Faktorkan dari .
Langkah 7.2.3.1.2
Batalkan faktor persekutuan.
Langkah 7.2.3.1.2.1
Faktorkan dari .
Langkah 7.2.3.1.2.2
Batalkan faktor persekutuan.
Langkah 7.2.3.1.2.3
Tulis kembali pernyataannya.
Langkah 7.2.3.2
Pindahkan tanda negatif di depan pecahan.
Langkah 7.2.4
Jawaban akhirnya adalah .
Langkah 7.3
Pada , turunannya adalah . Karena ini negatif, fungsinya menurun pada .
Menurun pada karena
Menurun pada karena
Langkah 8
Langkah 8.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 8.2
Sederhanakan hasilnya.
Langkah 8.2.1
Sederhanakan pembilangnya.
Langkah 8.2.1.1
Naikkan menjadi pangkat .
Langkah 8.2.1.2
Kalikan dengan .
Langkah 8.2.1.3
Kurangi dengan .
Langkah 8.2.2
Sederhanakan penyebutnya.
Langkah 8.2.2.1
Naikkan menjadi pangkat .
Langkah 8.2.2.2
Kurangi dengan .
Langkah 8.2.2.3
Naikkan menjadi pangkat .
Langkah 8.2.3
Pindahkan tanda negatif di depan pecahan.
Langkah 8.2.4
Jawaban akhirnya adalah .
Langkah 8.3
Pada , turunannya adalah . Karena ini negatif, fungsinya menurun pada .
Menurun pada karena
Menurun pada karena
Langkah 9
Sebutkan interval-interval yang fungsinya naik dan turun.
Menurun pada:
Langkah 10