Kalkulus Contoh

Tentukan di mana Fungsinya Meningkat/Menurun Menggunakan Turunan f(x)=x(2x-3)^2
Langkah 1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Tulis kembali sebagai .
Langkah 1.1.2
Perluas menggunakan Metode FOIL.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.1
Terapkan sifat distributif.
Langkah 1.1.2.2
Terapkan sifat distributif.
Langkah 1.1.2.3
Terapkan sifat distributif.
Langkah 1.1.3
Sederhanakan dan gabungkan suku-suku sejenis.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.1.1
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 1.1.3.1.2
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.1.2.1
Pindahkan .
Langkah 1.1.3.1.2.2
Kalikan dengan .
Langkah 1.1.3.1.3
Kalikan dengan .
Langkah 1.1.3.1.4
Kalikan dengan .
Langkah 1.1.3.1.5
Kalikan dengan .
Langkah 1.1.3.1.6
Kalikan dengan .
Langkah 1.1.3.2
Kurangi dengan .
Langkah 1.1.4
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 1.1.5
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.5.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.1.5.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.5.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.5.4
Kalikan dengan .
Langkah 1.1.5.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.5.6
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.5.7
Kalikan dengan .
Langkah 1.1.5.8
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.5.9
Tambahkan dan .
Langkah 1.1.5.10
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.5.11
Kalikan dengan .
Langkah 1.1.6
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.6.1
Terapkan sifat distributif.
Langkah 1.1.6.2
Gabungkan suku-sukunya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.6.2.1
Naikkan menjadi pangkat .
Langkah 1.1.6.2.2
Naikkan menjadi pangkat .
Langkah 1.1.6.2.3
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 1.1.6.2.4
Tambahkan dan .
Langkah 1.1.6.2.5
Pindahkan ke sebelah kiri .
Langkah 1.1.6.2.6
Tambahkan dan .
Langkah 1.1.6.2.7
Kurangi dengan .
Langkah 1.2
Turunan pertama dari terhadap adalah .
Langkah 2
Buat turunan pertamanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Buat turunan pertamanya agar sama dengan .
Langkah 2.2
Faktorkan sisi kiri persamaannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1.1
Faktorkan dari .
Langkah 2.2.1.2
Faktorkan dari .
Langkah 2.2.1.3
Faktorkan dari .
Langkah 2.2.1.4
Faktorkan dari .
Langkah 2.2.1.5
Faktorkan dari .
Langkah 2.2.2
Faktorkan.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.2.1
Faktorkan dengan pengelompokan.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.2.1.1
Untuk polinomial dari bentuk , tulis kembali suku tengahnya sebagai penjumlahan dari dua suku yang hasil kalinya adalah dan yang jumlahnya adalah .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.2.1.1.1
Faktorkan dari .
Langkah 2.2.2.1.1.2
Tulis kembali sebagai ditambah
Langkah 2.2.2.1.1.3
Terapkan sifat distributif.
Langkah 2.2.2.1.2
Faktorkan faktor persekutuan terbesar dari setiap kelompok.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.2.1.2.1
Kelompokkan dua suku pertama dan dua suku terakhir.
Langkah 2.2.2.1.2.2
Faktorkan faktor persekutuan terbesar (FPB) dari setiap kelompok.
Langkah 2.2.2.1.3
Faktorkan polinomial dengan memfaktorkan faktor persekutuan terbesar, .
Langkah 2.2.2.2
Hilangkan tanda kurung yang tidak perlu.
Langkah 2.3
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 2.4
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 2.4.1
Atur sama dengan .
Langkah 2.4.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 2.4.2.1
Tambahkan ke kedua sisi persamaan.
Langkah 2.4.2.2
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.4.2.2.1
Bagilah setiap suku di dengan .
Langkah 2.4.2.2.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 2.4.2.2.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.4.2.2.2.1.1
Batalkan faktor persekutuan.
Langkah 2.4.2.2.2.1.2
Bagilah dengan .
Langkah 2.5
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 2.5.1
Atur sama dengan .
Langkah 2.5.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 2.5.2.1
Tambahkan ke kedua sisi persamaan.
Langkah 2.5.2.2
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.5.2.2.1
Bagilah setiap suku di dengan .
Langkah 2.5.2.2.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 2.5.2.2.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.5.2.2.2.1.1
Batalkan faktor persekutuan.
Langkah 2.5.2.2.2.1.2
Bagilah dengan .
Langkah 2.6
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 3
Nilai-nilai yang membuat turunannya sama dengan adalah .
Langkah 4
Pisahkan menjadi interval terpisah di sekitar nilai yang menjadikan turunan atau tidak terdefinisi.
Langkah 5
Substitusikan nilai dari interval ke dalam turunannya untuk menentukan apakah fungsinya naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 5.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1.1
Naikkan menjadi pangkat .
Langkah 5.2.1.2
Kalikan dengan .
Langkah 5.2.1.3
Kalikan dengan .
Langkah 5.2.2
Sederhanakan dengan menambahkan bilangan.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.2.1
Tambahkan dan .
Langkah 5.2.2.2
Tambahkan dan .
Langkah 5.2.3
Jawaban akhirnya adalah .
Langkah 5.3
Pada , turunannya adalah . Karena ini positif, fungsinya meningkat pada .
Meningkat pada karena
Meningkat pada karena
Langkah 6
Substitusikan nilai dari interval ke dalam turunannya untuk menentukan apakah fungsinya naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 6.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 6.2.1.2
Kalikan dengan .
Langkah 6.2.1.3
Kalikan dengan .
Langkah 6.2.2
Sederhanakan dengan menambahkan dan mengurangkan.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.2.1
Kurangi dengan .
Langkah 6.2.2.2
Tambahkan dan .
Langkah 6.2.3
Jawaban akhirnya adalah .
Langkah 6.3
Pada , turunannya adalah . Karena ini negatif, fungsinya menurun pada .
Menurun pada karena
Menurun pada karena
Langkah 7
Substitusikan nilai dari interval ke dalam turunannya untuk menentukan apakah fungsinya naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 7.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.1.1
Naikkan menjadi pangkat .
Langkah 7.2.1.2
Kalikan dengan .
Langkah 7.2.1.3
Kalikan dengan .
Langkah 7.2.2
Sederhanakan dengan menambahkan dan mengurangkan.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.2.1
Kurangi dengan .
Langkah 7.2.2.2
Tambahkan dan .
Langkah 7.2.3
Jawaban akhirnya adalah .
Langkah 7.3
Pada , turunannya adalah . Karena ini positif, fungsinya meningkat pada .
Meningkat pada karena
Meningkat pada karena
Langkah 8
Sebutkan interval-interval yang fungsinya naik dan turun.
Meningkat pada:
Menurun pada:
Langkah 9