Kalkulus Contoh

Tentukan di mana Fungsinya Meningkat/Menurun Menggunakan Turunan f(x)=x^4-2x^2+3
Langkah 1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 1.1.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2.3
Kalikan dengan .
Langkah 1.1.3
Diferensialkan menggunakan Aturan Konstanta.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.3.2
Tambahkan dan .
Langkah 1.2
Turunan pertama dari terhadap adalah .
Langkah 2
Buat turunan pertamanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Buat turunan pertamanya agar sama dengan .
Langkah 2.2
Faktorkan sisi kiri persamaannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1.1
Faktorkan dari .
Langkah 2.2.1.2
Faktorkan dari .
Langkah 2.2.1.3
Faktorkan dari .
Langkah 2.2.2
Tulis kembali sebagai .
Langkah 2.2.3
Faktorkan.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.3.1
Karena kedua suku merupakan kuadrat sempurna, faktorkan menggunakan rumus beda pangkat dua, di mana dan .
Langkah 2.2.3.2
Hilangkan tanda kurung yang tidak perlu.
Langkah 2.3
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 2.4
Atur sama dengan .
Langkah 2.5
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 2.5.1
Atur sama dengan .
Langkah 2.5.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 2.6
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 2.6.1
Atur sama dengan .
Langkah 2.6.2
Tambahkan ke kedua sisi persamaan.
Langkah 2.7
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 3
Nilai-nilai yang membuat turunannya sama dengan adalah .
Langkah 4
Pisahkan menjadi interval terpisah di sekitar nilai yang menjadikan turunan atau tidak terdefinisi.
Langkah 5
Substitusikan nilai dari interval ke dalam turunannya untuk menentukan apakah fungsinya naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 5.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1.1
Naikkan menjadi pangkat .
Langkah 5.2.1.2
Kalikan dengan .
Langkah 5.2.1.3
Kalikan dengan .
Langkah 5.2.2
Tambahkan dan .
Langkah 5.2.3
Jawaban akhirnya adalah .
Langkah 5.3
Pada , turunannya adalah . Karena ini negatif, fungsinya menurun pada .
Menurun pada karena
Menurun pada karena
Langkah 6
Substitusikan nilai dari interval ke dalam turunannya untuk menentukan apakah fungsinya naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 6.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1.1
Gunakan kaidah pangkat untuk menyebarkan pangkat.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1.1.1
Terapkan kaidah hasil kali ke .
Langkah 6.2.1.1.2
Terapkan kaidah hasil kali ke .
Langkah 6.2.1.2
Naikkan menjadi pangkat .
Langkah 6.2.1.3
Satu dipangkat berapa pun sama dengan satu.
Langkah 6.2.1.4
Naikkan menjadi pangkat .
Langkah 6.2.1.5
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1.5.1
Pindahkan negatif pertama pada ke dalam pembilangnya.
Langkah 6.2.1.5.2
Faktorkan dari .
Langkah 6.2.1.5.3
Batalkan faktor persekutuan.
Langkah 6.2.1.5.4
Tulis kembali pernyataannya.
Langkah 6.2.1.6
Pindahkan tanda negatif di depan pecahan.
Langkah 6.2.1.7
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1.7.1
Pindahkan negatif pertama pada ke dalam pembilangnya.
Langkah 6.2.1.7.2
Faktorkan dari .
Langkah 6.2.1.7.3
Batalkan faktor persekutuan.
Langkah 6.2.1.7.4
Tulis kembali pernyataannya.
Langkah 6.2.1.8
Kalikan dengan .
Langkah 6.2.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 6.2.3
Gabungkan dan .
Langkah 6.2.4
Gabungkan pembilang dari penyebut persekutuan.
Langkah 6.2.5
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.5.1
Kalikan dengan .
Langkah 6.2.5.2
Tambahkan dan .
Langkah 6.2.6
Jawaban akhirnya adalah .
Langkah 6.3
Pada , turunannya adalah . Karena ini positif, fungsinya meningkat pada .
Meningkat pada karena
Meningkat pada karena
Langkah 7
Substitusikan nilai dari interval ke dalam turunannya untuk menentukan apakah fungsinya naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 7.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.1.1
Terapkan kaidah hasil kali ke .
Langkah 7.2.1.2
Satu dipangkat berapa pun sama dengan satu.
Langkah 7.2.1.3
Naikkan menjadi pangkat .
Langkah 7.2.1.4
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 7.2.1.4.1
Faktorkan dari .
Langkah 7.2.1.4.2
Batalkan faktor persekutuan.
Langkah 7.2.1.4.3
Tulis kembali pernyataannya.
Langkah 7.2.1.5
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 7.2.1.5.1
Faktorkan dari .
Langkah 7.2.1.5.2
Batalkan faktor persekutuan.
Langkah 7.2.1.5.3
Tulis kembali pernyataannya.
Langkah 7.2.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 7.2.3
Gabungkan dan .
Langkah 7.2.4
Gabungkan pembilang dari penyebut persekutuan.
Langkah 7.2.5
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.5.1
Kalikan dengan .
Langkah 7.2.5.2
Kurangi dengan .
Langkah 7.2.6
Pindahkan tanda negatif di depan pecahan.
Langkah 7.2.7
Jawaban akhirnya adalah .
Langkah 7.3
Pada , turunannya adalah . Karena ini negatif, fungsinya menurun pada .
Menurun pada karena
Menurun pada karena
Langkah 8
Substitusikan nilai dari interval ke dalam turunannya untuk menentukan apakah fungsinya naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 8.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 8.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 8.2.1.1
Naikkan menjadi pangkat .
Langkah 8.2.1.2
Kalikan dengan .
Langkah 8.2.1.3
Kalikan dengan .
Langkah 8.2.2
Kurangi dengan .
Langkah 8.2.3
Jawaban akhirnya adalah .
Langkah 8.3
Pada , turunannya adalah . Karena ini positif, fungsinya meningkat pada .
Meningkat pada karena
Meningkat pada karena
Langkah 9
Sebutkan interval-interval yang fungsinya naik dan turun.
Meningkat pada:
Menurun pada:
Langkah 10