Masukkan soal...
Kalkulus Contoh
Langkah 1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 2
Langkah 2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 2.3
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 2.3.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.3.2
Turunan dari terhadap adalah .
Langkah 2.3.3
Ganti semua kemunculan dengan .
Langkah 2.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.5
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.6
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 2.6.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.6.2
Turunan dari terhadap adalah .
Langkah 2.6.3
Ganti semua kemunculan dengan .
Langkah 2.7
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.8
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.9
Kalikan dengan .
Langkah 2.10
Pindahkan ke sebelah kiri .
Langkah 2.11
Naikkan menjadi pangkat .
Langkah 2.12
Naikkan menjadi pangkat .
Langkah 2.13
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.14
Tambahkan dan .
Langkah 2.15
Kalikan dengan .
Langkah 2.16
Pindahkan ke sebelah kiri .
Langkah 2.17
Naikkan menjadi pangkat .
Langkah 2.18
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.19
Tambahkan dan .
Langkah 3
Langkah 3.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 3.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.1.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana (Variabel2)=.
Langkah 3.1.3
Ganti semua kemunculan dengan .
Langkah 3.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.4
Kalikan dengan .
Langkah 3.5
Pindahkan ke sebelah kiri .
Langkah 4
Langkah 4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.3
Kalikan dengan .
Langkah 5
Langkah 5.1
Terapkan sifat distributif.
Langkah 5.2
Gabungkan suku-sukunya.
Langkah 5.2.1
Kalikan dengan .
Langkah 5.2.2
Kalikan dengan .
Langkah 5.3
Susun kembali suku-suku.