Kalkulus Contoh

Tentukan Titik Kritisnya f(x)=1/(x^2-2x+8)
Langkah 1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Tulis kembali sebagai .
Langkah 1.1.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2.3
Ganti semua kemunculan dengan .
Langkah 1.1.3
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.3.5
Kalikan dengan .
Langkah 1.1.3.6
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.3.7
Tambahkan dan .
Langkah 1.1.4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.4.1
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 1.1.4.2
Susun kembali faktor-faktor dari .
Langkah 1.1.4.3
Terapkan sifat distributif.
Langkah 1.1.4.4
Kalikan dengan .
Langkah 1.1.4.5
Kalikan dengan .
Langkah 1.1.4.6
Kalikan dengan .
Langkah 1.1.4.7
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.4.7.1
Faktorkan dari .
Langkah 1.1.4.7.2
Faktorkan dari .
Langkah 1.1.4.7.3
Faktorkan dari .
Langkah 1.1.4.8
Faktorkan dari .
Langkah 1.1.4.9
Tulis kembali sebagai .
Langkah 1.1.4.10
Faktorkan dari .
Langkah 1.1.4.11
Tulis kembali sebagai .
Langkah 1.1.4.12
Pindahkan tanda negatif di depan pecahan.
Langkah 1.2
Turunan pertama dari terhadap adalah .
Langkah 2
Buat turunan pertamanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Buat turunan pertamanya agar sama dengan .
Langkah 2.2
Atur agar pembilangnya sama dengan nol.
Langkah 2.3
Selesaikan persamaan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1.1
Bagilah setiap suku di dengan .
Langkah 2.3.1.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1.2.1.1
Batalkan faktor persekutuan.
Langkah 2.3.1.2.1.2
Bagilah dengan .
Langkah 2.3.1.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1.3.1
Bagilah dengan .
Langkah 2.3.2
Tambahkan ke kedua sisi persamaan.
Langkah 3
Tentukan nilai saat turunannya tidak terdefinisi.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Domain dari pernyataan adalah semua bilangan riil, kecuali di mana pernyataannya tidak terdefinisi. Dalam hal ini, tidak ada bilangan riil yang membuat pernyataannya tidak terdefinisi.
Langkah 4
Evaluasi di setiap nilai di mana turunannya adalah atau tidak terdefinisi.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Evaluasi pada .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.1
Substitusikan untuk .
Langkah 4.1.2
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 4.1.2.2
Kalikan dengan .
Langkah 4.1.2.3
Kurangi dengan .
Langkah 4.1.2.4
Tambahkan dan .
Langkah 4.2
Tuliskan semua titik-titiknya.
Langkah 5