Kalkulus Contoh

Cari dy/dx y=(x-1)^2+1
Langkah 1
Diferensialkan kedua sisi persamaan tersebut.
Langkah 2
Turunan dari terhadap adalah .
Langkah 3
Diferensialkan sisi kanan dari persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Tulis kembali sebagai .
Langkah 3.2
Perluas menggunakan Metode FOIL.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Terapkan sifat distributif.
Langkah 3.2.2
Terapkan sifat distributif.
Langkah 3.2.3
Terapkan sifat distributif.
Langkah 3.3
Sederhanakan dan gabungkan suku-suku sejenis.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1.1
Kalikan dengan .
Langkah 3.3.1.2
Pindahkan ke sebelah kiri .
Langkah 3.3.1.3
Tulis kembali sebagai .
Langkah 3.3.1.4
Tulis kembali sebagai .
Langkah 3.3.1.5
Kalikan dengan .
Langkah 3.3.2
Kurangi dengan .
Langkah 3.4
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 3.4.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 3.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.5
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 3.5.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.5.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.5.3
Kalikan dengan .
Langkah 3.6
Diferensialkan menggunakan Aturan Konstanta.
Ketuk untuk lebih banyak langkah...
Langkah 3.6.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.6.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.7
Gabungkan suku-sukunya.
Ketuk untuk lebih banyak langkah...
Langkah 3.7.1
Tambahkan dan .
Langkah 3.7.2
Tambahkan dan .
Langkah 4
Membentuk ulang persamaan dengan mengatur sisi kiri sama dengan sisi kanan.
Langkah 5
Ganti dengan .