Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Langkah 1.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 1.1.2
Evaluasi limit dari pembilangnya.
Langkah 1.1.2.1
Evaluasi limitnya.
Langkah 1.1.2.1.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 1.1.2.1.2
Pisahkan limitnya menggunakan Kaidah Hasil Bagi Limit pada limitnya ketika mendekati .
Langkah 1.1.2.1.3
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 1.1.2.1.4
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 1.1.2.1.5
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 1.1.2.1.6
Pindahkan batas di dalam fungsi trigonometri karena sinus kontinu.
Langkah 1.1.2.1.7
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 1.1.2.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.2.3
Sederhanakan jawabannya.
Langkah 1.1.2.3.1
Sederhanakan penyebutnya.
Langkah 1.1.2.3.1.1
Nilai eksak dari adalah .
Langkah 1.1.2.3.1.2
Tambahkan dan .
Langkah 1.1.2.3.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 1.1.2.3.3
Kurangi dengan .
Langkah 1.1.2.3.4
Bagilah dengan .
Langkah 1.1.3
Evaluasi limit dari penyebutnya.
Langkah 1.1.3.1
Pindahkan batas di dalam fungsi trigonometri karena sinus kontinu.
Langkah 1.1.3.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.3.3
Nilai eksak dari adalah .
Langkah 1.1.3.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 1.3
Menentukan turunan dari pembilang dan penyebut.
Langkah 1.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 1.3.2
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 1.3.3
Evaluasi .
Langkah 1.3.3.1
Tulis kembali sebagai .
Langkah 1.3.3.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 1.3.3.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.3.3.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.3.2.3
Ganti semua kemunculan dengan .
Langkah 1.3.3.3
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 1.3.3.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.3.5
Turunan dari terhadap adalah .
Langkah 1.3.3.6
Tambahkan dan .
Langkah 1.3.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.5
Sederhanakan.
Langkah 1.3.5.1
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 1.3.5.2
Gabungkan suku-sukunya.
Langkah 1.3.5.2.1
Gabungkan dan .
Langkah 1.3.5.2.2
Tambahkan dan .
Langkah 1.3.6
Turunan dari terhadap adalah .
Langkah 1.4
Kalikan pembilang dengan balikan dari penyebut.
Langkah 1.5
Kalikan dengan .
Langkah 1.6
Batalkan faktor persekutuan dari .
Langkah 1.6.1
Batalkan faktor persekutuan.
Langkah 1.6.2
Tulis kembali pernyataannya.
Langkah 2
Langkah 2.1
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 2.2
Pisahkan limitnya menggunakan Kaidah Hasil Bagi Limit pada limitnya ketika mendekati .
Langkah 2.3
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 2.4
Pindahkan pangkat dari di luar limit menggunakan Kaidah Pangkat Limit.
Langkah 2.5
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 2.6
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 2.7
Pindahkan batas di dalam fungsi trigonometri karena sinus kontinu.
Langkah 3
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 4
Langkah 4.1
Nilai eksak dari adalah .
Langkah 4.2
Tambahkan dan .
Langkah 4.3
Naikkan menjadi pangkat .
Langkah 5
Hasilnya dapat ditampilkan dalam beberapa bentuk.
Bentuk Eksak:
Bentuk Desimal: