Kalkulus Contoh

Tentukan Maksimum dan Minimum Lokal xe^x
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Tentukan turunan pertama dari fungsi.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 2.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 2.3
Diferensialkan menggunakan Kaidah Pangkat.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.2
Kalikan dengan .
Langkah 3
Tentukan turunan kedua dari fungsi.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 3.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 3.2.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 3.2.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.2.4
Kalikan dengan .
Langkah 3.3
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 3.4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 3.4.1
Tambahkan dan .
Langkah 3.4.2
Susun kembali suku-suku.
Langkah 3.4.3
Susun kembali faktor-faktor dalam .
Langkah 4
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 5
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 5.1.1
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 5.1.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 5.1.3
Diferensialkan menggunakan Kaidah Pangkat.
Ketuk untuk lebih banyak langkah...
Langkah 5.1.3.1
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 5.1.3.2
Kalikan dengan .
Langkah 5.2
Turunan pertama dari terhadap adalah .
Langkah 6
Buat turunan pertamanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Buat turunan pertamanya agar sama dengan .
Langkah 6.2
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1
Faktorkan dari .
Langkah 6.2.2
Kalikan dengan .
Langkah 6.2.3
Faktorkan dari .
Langkah 6.3
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 6.4
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 6.4.1
Atur sama dengan .
Langkah 6.4.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 6.4.2.1
Ambil logaritma alami dari kedua sisi persamaan untuk menghapus variabel dari eksponennya.
Langkah 6.4.2.2
Persamaannya tidak dapat diselesaikan karena tidak terdefinisi.
Tidak terdefinisi
Langkah 6.4.2.3
Tidak ada penyelesaian untuk
Tidak ada penyelesaian
Tidak ada penyelesaian
Tidak ada penyelesaian
Langkah 6.5
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 6.5.1
Atur sama dengan .
Langkah 6.5.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 6.6
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 7
Tentukan nilai saat turunannya tidak terdefinisi.
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Domain dari pernyataan adalah semua bilangan riil, kecuali di mana pernyataannya tidak terdefinisi. Dalam hal ini, tidak ada bilangan riil yang membuat pernyataannya tidak terdefinisi.
Langkah 8
Titik kritis untuk dievaluasi.
Langkah 9
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 10
Evaluasi turunan keduanya.
Ketuk untuk lebih banyak langkah...
Langkah 10.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 10.1.1
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 10.1.2
Tulis kembali sebagai .
Langkah 10.1.3
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 10.1.4
Gabungkan dan .
Langkah 10.2
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 10.2.1
Gabungkan pembilang dari penyebut persekutuan.
Langkah 10.2.2
Tambahkan dan .
Langkah 11
adalah minimum lokal karena nilai dari turunan keduanya positif. Ini disebut sebagai uji turunan kedua.
adalah minimum lokal
Langkah 12
Tentukan nilai y ketika .
Ketuk untuk lebih banyak langkah...
Langkah 12.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 12.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 12.2.1
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 12.2.2
Tulis kembali sebagai .
Langkah 12.2.3
Jawaban akhirnya adalah .
Langkah 13
Ini adalah ekstrem lokal untuk .
adalah minimum lokal
Langkah 14