Kalkulus Contoh

Tentukan Maksimum dan Minimum Lokal f(x)=3x^4+4x^3-48x^2-144x+288
Langkah 1
Tentukan turunan pertama dari fungsi.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.3
Kalikan dengan .
Langkah 1.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.3
Kalikan dengan .
Langkah 1.4
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.4.3
Kalikan dengan .
Langkah 1.5
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.5.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.5.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.5.3
Kalikan dengan .
Langkah 1.6
Diferensialkan menggunakan Aturan Konstanta.
Ketuk untuk lebih banyak langkah...
Langkah 1.6.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.6.2
Tambahkan dan .
Langkah 2
Tentukan turunan kedua dari fungsi.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.3
Kalikan dengan .
Langkah 2.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.3
Kalikan dengan .
Langkah 2.4
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.4.3
Kalikan dengan .
Langkah 2.5
Diferensialkan menggunakan Aturan Konstanta.
Ketuk untuk lebih banyak langkah...
Langkah 2.5.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.5.2
Tambahkan dan .
Langkah 3
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 4
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 4.1.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.2.3
Kalikan dengan .
Langkah 4.1.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.3.3
Kalikan dengan .
Langkah 4.1.4
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.4.3
Kalikan dengan .
Langkah 4.1.5
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.5.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.5.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.5.3
Kalikan dengan .
Langkah 4.1.6
Diferensialkan menggunakan Aturan Konstanta.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.6.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.6.2
Tambahkan dan .
Langkah 4.2
Turunan pertama dari terhadap adalah .
Langkah 5
Buat turunan pertamanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Buat turunan pertamanya agar sama dengan .
Langkah 5.2
Faktorkan sisi kiri persamaannya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1.1
Faktorkan dari .
Langkah 5.2.1.2
Faktorkan dari .
Langkah 5.2.1.3
Faktorkan dari .
Langkah 5.2.1.4
Faktorkan dari .
Langkah 5.2.1.5
Faktorkan dari .
Langkah 5.2.1.6
Faktorkan dari .
Langkah 5.2.1.7
Faktorkan dari .
Langkah 5.2.2
Faktorkan menggunakan uji akar rasional.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.2.1
Jika fungsi Polinomial memiliki koefisien bilangan bulat, maka setiap nol rasional akan memiliki bentuk di mana adalah faktor dari konstanta dan adalah faktor dari koefisien pertama.
Langkah 5.2.2.2
Tentukan setiap gabungan dari . Ini adalah akar yang memungkinkan dari fungsi polinomial.
Langkah 5.2.2.3
Substitusikan dan sederhanakan pernyataannya. Dalam hal ini, pernyataannya sama dengan sehingga adalah akar dari polinomialnya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.2.3.1
Substitusikan ke dalam polinomialnya.
Langkah 5.2.2.3.2
Naikkan menjadi pangkat .
Langkah 5.2.2.3.3
Naikkan menjadi pangkat .
Langkah 5.2.2.3.4
Tambahkan dan .
Langkah 5.2.2.3.5
Kalikan dengan .
Langkah 5.2.2.3.6
Tambahkan dan .
Langkah 5.2.2.3.7
Kurangi dengan .
Langkah 5.2.2.4
Karena adalah akar yang telah diketahui, bagi polinomial tersebut dengan untuk mencari polinomial hasil bagi. Polinomial ini kemudian dapat digunakan untuk menemukan akar yang belum diketahui.
Langkah 5.2.2.5
Bagilah dengan .
Ketuk untuk lebih banyak langkah...
Langkah 5.2.2.5.1
Tulis polinomial yang akan dibagi. Jika tidak ada suku untuk setiap eksponen, masukan suku dengan nilai .
++--
Langkah 5.2.2.5.2
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
++--
Langkah 5.2.2.5.3
Kalikan suku hasil bagi baru dengan pembagi.
++--
++
Langkah 5.2.2.5.4
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
++--
--
Langkah 5.2.2.5.5
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
++--
--
-
Langkah 5.2.2.5.6
Mengeluarkan suku-suku berikutnya dari bilangan yang dibagi asli ke dalam bilangan yang dibagi saat ini.
++--
--
--
Langkah 5.2.2.5.7
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
-
++--
--
--
Langkah 5.2.2.5.8
Kalikan suku hasil bagi baru dengan pembagi.
-
++--
--
--
--
Langkah 5.2.2.5.9
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
-
++--
--
--
++
Langkah 5.2.2.5.10
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
-
++--
--
--
++
-
Langkah 5.2.2.5.11
Mengeluarkan suku-suku berikutnya dari bilangan yang dibagi asli ke dalam bilangan yang dibagi saat ini.
-
++--
--
--
++
--
Langkah 5.2.2.5.12
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
--
++--
--
--
++
--
Langkah 5.2.2.5.13
Kalikan suku hasil bagi baru dengan pembagi.
--
++--
--
--
++
--
--
Langkah 5.2.2.5.14
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
--
++--
--
--
++
--
++
Langkah 5.2.2.5.15
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
--
++--
--
--
++
--
++
Langkah 5.2.2.5.16
Karena sisanya adalah , maka jawaban akhirnya adalah hasil baginya.
Langkah 5.2.2.6
Tulis sebagai himpunan faktor.
Langkah 5.2.3
Faktorkan.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.3.1
Faktorkan menggunakan metode AC.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.3.1.1
Faktorkan menggunakan metode AC.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.3.1.1.1
Mempertimbangkan bentuk . Tentukan pasangan bilangan bulat yang hasil kalinya (Variabel1) dan jumlahnya . Dalam hal ini, hasil kalinya dan jumlahnya .
Langkah 5.2.3.1.1.2
Tulis bentuk yang difaktorkan menggunakan bilangan bulat ini.
Langkah 5.2.3.1.2
Hilangkan tanda kurung yang tidak perlu.
Langkah 5.2.3.2
Hilangkan tanda kurung yang tidak perlu.
Langkah 5.2.4
Gabungkan eksponen.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.4.1
Naikkan menjadi pangkat .
Langkah 5.2.4.2
Naikkan menjadi pangkat .
Langkah 5.2.4.3
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 5.2.4.4
Tambahkan dan .
Langkah 5.3
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 5.4
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 5.4.1
Atur sama dengan .
Langkah 5.4.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 5.4.2.1
Atur agar sama dengan .
Langkah 5.4.2.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 5.5
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 5.5.1
Atur sama dengan .
Langkah 5.5.2
Tambahkan ke kedua sisi persamaan.
Langkah 5.6
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 6
Tentukan nilai saat turunannya tidak terdefinisi.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Domain dari pernyataan adalah semua bilangan riil, kecuali di mana pernyataannya tidak terdefinisi. Dalam hal ini, tidak ada bilangan riil yang membuat pernyataannya tidak terdefinisi.
Langkah 7
Titik kritis untuk dievaluasi.
Langkah 8
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 9
Evaluasi turunan keduanya.
Ketuk untuk lebih banyak langkah...
Langkah 9.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 9.1.1
Naikkan menjadi pangkat .
Langkah 9.1.2
Kalikan dengan .
Langkah 9.1.3
Kalikan dengan .
Langkah 9.2
Sederhanakan dengan mengurangkan bilangan.
Ketuk untuk lebih banyak langkah...
Langkah 9.2.1
Kurangi dengan .
Langkah 9.2.2
Kurangi dengan .
Langkah 10
Karena setidaknya ada satu titik di atau turunan kedua yang tidak terdefinisikan, lakukan uji turunan pertama.
Ketuk untuk lebih banyak langkah...
Langkah 10.1
Bagi menjadi interval terpisah di sekitar nilai yang membuat turunan pertamanya atau tidak terdefinisi.
Langkah 10.2
Substitusikan bilangan apa pun, seperti , dari interval dalam turunan pertama untuk memeriksa apakah hasilnya negatif atau positif.
Ketuk untuk lebih banyak langkah...
Langkah 10.2.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 10.2.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 10.2.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 10.2.2.1.1
Naikkan menjadi pangkat .
Langkah 10.2.2.1.2
Kalikan dengan .
Langkah 10.2.2.1.3
Naikkan menjadi pangkat .
Langkah 10.2.2.1.4
Kalikan dengan .
Langkah 10.2.2.1.5
Kalikan dengan .
Langkah 10.2.2.2
Sederhanakan dengan menambahkan dan mengurangkan.
Ketuk untuk lebih banyak langkah...
Langkah 10.2.2.2.1
Tambahkan dan .
Langkah 10.2.2.2.2
Tambahkan dan .
Langkah 10.2.2.2.3
Kurangi dengan .
Langkah 10.2.2.3
Jawaban akhirnya adalah .
Langkah 10.3
Substitusikan bilangan apa pun, seperti , dari interval dalam turunan pertama untuk memeriksa apakah hasilnya negatif atau positif.
Ketuk untuk lebih banyak langkah...
Langkah 10.3.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 10.3.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 10.3.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 10.3.2.1.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 10.3.2.1.2
Kalikan dengan .
Langkah 10.3.2.1.3
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 10.3.2.1.4
Kalikan dengan .
Langkah 10.3.2.1.5
Kalikan dengan .
Langkah 10.3.2.2
Sederhanakan dengan menambahkan dan mengurangkan.
Ketuk untuk lebih banyak langkah...
Langkah 10.3.2.2.1
Tambahkan dan .
Langkah 10.3.2.2.2
Tambahkan dan .
Langkah 10.3.2.2.3
Kurangi dengan .
Langkah 10.3.2.3
Jawaban akhirnya adalah .
Langkah 10.4
Substitusikan bilangan apa pun, seperti , dari interval dalam turunan pertama untuk memeriksa apakah hasilnya negatif atau positif.
Ketuk untuk lebih banyak langkah...
Langkah 10.4.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 10.4.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 10.4.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 10.4.2.1.1
Naikkan menjadi pangkat .
Langkah 10.4.2.1.2
Kalikan dengan .
Langkah 10.4.2.1.3
Naikkan menjadi pangkat .
Langkah 10.4.2.1.4
Kalikan dengan .
Langkah 10.4.2.1.5
Kalikan dengan .
Langkah 10.4.2.2
Sederhanakan dengan menambahkan dan mengurangkan.
Ketuk untuk lebih banyak langkah...
Langkah 10.4.2.2.1
Tambahkan dan .
Langkah 10.4.2.2.2
Kurangi dengan .
Langkah 10.4.2.2.3
Kurangi dengan .
Langkah 10.4.2.3
Jawaban akhirnya adalah .
Langkah 10.5
Karena turunan pertamanya tidak mengubah tanda-tanda di sekitar , ini bukan merupakan maksimum atau minimum lokal.
Bukan maksimum atau minimum lokal
Langkah 10.6
Karena turunan pertamanya diubah tandanya dari negatif menjadi positif di sekitar , maka adalah minimum lokal.
adalah minimum lokal
adalah minimum lokal
Langkah 11