Kalkulus Contoh

Tentukan Maksimum dan Minimum Lokal f(x)=4x^(3/5)-x^(4/5)
Langkah 1
Tentukan turunan pertama dari fungsi.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 1.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.3
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 1.2.4
Gabungkan dan .
Langkah 1.2.5
Gabungkan pembilang dari penyebut persekutuan.
Langkah 1.2.6
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.6.1
Kalikan dengan .
Langkah 1.2.6.2
Kurangi dengan .
Langkah 1.2.7
Pindahkan tanda negatif di depan pecahan.
Langkah 1.2.8
Gabungkan dan .
Langkah 1.2.9
Gabungkan dan .
Langkah 1.2.10
Kalikan dengan .
Langkah 1.2.11
Pindahkan menjadi penyebut menggunakan aturan eksponen negatif .
Langkah 1.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.3
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 1.3.4
Gabungkan dan .
Langkah 1.3.5
Gabungkan pembilang dari penyebut persekutuan.
Langkah 1.3.6
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.6.1
Kalikan dengan .
Langkah 1.3.6.2
Kurangi dengan .
Langkah 1.3.7
Pindahkan tanda negatif di depan pecahan.
Langkah 1.3.8
Gabungkan dan .
Langkah 1.3.9
Pindahkan menjadi penyebut menggunakan aturan eksponen negatif .
Langkah 2
Tentukan turunan kedua dari fungsi.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 2.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.2
Tulis kembali sebagai .
Langkah 2.2.3
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.3.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.2.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.3.3
Ganti semua kemunculan dengan .
Langkah 2.2.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.5
Kalikan eksponen dalam .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.5.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 2.2.5.2
Kalikan .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.5.2.1
Gabungkan dan .
Langkah 2.2.5.2.2
Kalikan dengan .
Langkah 2.2.5.3
Pindahkan tanda negatif di depan pecahan.
Langkah 2.2.6
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 2.2.7
Gabungkan dan .
Langkah 2.2.8
Gabungkan pembilang dari penyebut persekutuan.
Langkah 2.2.9
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.9.1
Kalikan dengan .
Langkah 2.2.9.2
Kurangi dengan .
Langkah 2.2.10
Pindahkan tanda negatif di depan pecahan.
Langkah 2.2.11
Gabungkan dan .
Langkah 2.2.12
Gabungkan dan .
Langkah 2.2.13
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.13.1
Pindahkan .
Langkah 2.2.13.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.2.13.3
Gabungkan pembilang dari penyebut persekutuan.
Langkah 2.2.13.4
Kurangi dengan .
Langkah 2.2.13.5
Pindahkan tanda negatif di depan pecahan.
Langkah 2.2.14
Pindahkan menjadi penyebut menggunakan aturan eksponen negatif .
Langkah 2.2.15
Kalikan dengan .
Langkah 2.2.16
Kalikan dengan .
Langkah 2.2.17
Kalikan dengan .
Langkah 2.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.2
Tulis kembali sebagai .
Langkah 2.3.3
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.3.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.3.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.3.3
Ganti semua kemunculan dengan .
Langkah 2.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.5
Kalikan eksponen dalam .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.5.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 2.3.5.2
Gabungkan dan .
Langkah 2.3.5.3
Pindahkan tanda negatif di depan pecahan.
Langkah 2.3.6
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 2.3.7
Gabungkan dan .
Langkah 2.3.8
Gabungkan pembilang dari penyebut persekutuan.
Langkah 2.3.9
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.9.1
Kalikan dengan .
Langkah 2.3.9.2
Kurangi dengan .
Langkah 2.3.10
Pindahkan tanda negatif di depan pecahan.
Langkah 2.3.11
Gabungkan dan .
Langkah 2.3.12
Gabungkan dan .
Langkah 2.3.13
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.13.1
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.3.13.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 2.3.13.3
Kurangi dengan .
Langkah 2.3.13.4
Pindahkan tanda negatif di depan pecahan.
Langkah 2.3.14
Pindahkan menjadi penyebut menggunakan aturan eksponen negatif .
Langkah 2.3.15
Kalikan dengan .
Langkah 2.3.16
Kalikan dengan .
Langkah 2.3.17
Kalikan dengan .
Langkah 2.3.18
Kalikan dengan .
Langkah 2.4
Susun kembali suku-suku.
Langkah 3
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 4
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 4.1.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.2.3
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 4.1.2.4
Gabungkan dan .
Langkah 4.1.2.5
Gabungkan pembilang dari penyebut persekutuan.
Langkah 4.1.2.6
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.6.1
Kalikan dengan .
Langkah 4.1.2.6.2
Kurangi dengan .
Langkah 4.1.2.7
Pindahkan tanda negatif di depan pecahan.
Langkah 4.1.2.8
Gabungkan dan .
Langkah 4.1.2.9
Gabungkan dan .
Langkah 4.1.2.10
Kalikan dengan .
Langkah 4.1.2.11
Pindahkan menjadi penyebut menggunakan aturan eksponen negatif .
Langkah 4.1.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.3.3
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 4.1.3.4
Gabungkan dan .
Langkah 4.1.3.5
Gabungkan pembilang dari penyebut persekutuan.
Langkah 4.1.3.6
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.3.6.1
Kalikan dengan .
Langkah 4.1.3.6.2
Kurangi dengan .
Langkah 4.1.3.7
Pindahkan tanda negatif di depan pecahan.
Langkah 4.1.3.8
Gabungkan dan .
Langkah 4.1.3.9
Pindahkan menjadi penyebut menggunakan aturan eksponen negatif .
Langkah 4.2
Turunan pertama dari terhadap adalah .
Langkah 5
Buat turunan pertamanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Buat turunan pertamanya agar sama dengan .
Langkah 5.2
Tentukan penyebut persekutuan terkecil dari suku-suku dalam persamaan tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1
Menentukan penyebut sekutu terkecil dari daftar nilai sama dengan mencari KPK dari penyebut dari nilai-nilai-tersebut.
Langkah 5.2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Langkah 5.2.3
KPK-nya adalah bilangan positif terkecil yang semua bilangannya dibagi secara merata.
1. Sebutkan faktor prima dari masing-masing bilangan.
2. Kalikan masing-masing faktor dengan jumlah terbesar dari kedua bilangan tersebut.
Langkah 5.2.4
Karena tidak memiliki faktor selain dan .
adalah bilangan prima
Langkah 5.2.5
Bilangan bukan bilangan prima karena bilangan tersebut hanya memiliki satu faktor positif, yaitu bilangan itu sendiri.
Bukan bilangan prima
Langkah 5.2.6
KPK dari adalah hasil perkalian semua faktor prima yang paling banyak muncul pada kedua bilangan tersebut.
Langkah 5.2.7
KPK dari adalah hasil dari mengalikan semua faktor prima dengan frekuensi terbanyak yang muncul pada kedua pernyataan tersebut.
Langkah 5.2.8
KPK untuk adalah bagian bilangan dikalikan dengan bagian variabel.
Langkah 5.3
Kalikan setiap suku pada dengan untuk mengeliminasi pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.1
Kalikan setiap suku dalam dengan .
Langkah 5.3.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.2.1.1
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 5.3.2.1.2
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.3.2.1.2.1
Batalkan faktor persekutuan.
Langkah 5.3.2.1.2.2
Tulis kembali pernyataannya.
Langkah 5.3.2.1.3
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.3.2.1.3.1
Batalkan faktor persekutuan.
Langkah 5.3.2.1.3.2
Tulis kembali pernyataannya.
Langkah 5.3.2.1.4
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.3.2.1.4.1
Pindahkan negatif pertama pada ke dalam pembilangnya.
Langkah 5.3.2.1.4.2
Faktorkan dari .
Langkah 5.3.2.1.4.3
Faktorkan dari .
Langkah 5.3.2.1.4.4
Batalkan faktor persekutuan.
Langkah 5.3.2.1.4.5
Tulis kembali pernyataannya.
Langkah 5.3.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.3.1
Kalikan .
Ketuk untuk lebih banyak langkah...
Langkah 5.3.3.1.1
Kalikan dengan .
Langkah 5.3.3.1.2
Kalikan dengan .
Langkah 5.4
Selesaikan persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 5.4.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 5.4.2
Pangkatkan setiap sisi persamaan dengan pangkat untuk menghilangkan eksponen pecahan di sisi kiri.
Langkah 5.4.3
Sederhanakan bentuk eksponen.
Ketuk untuk lebih banyak langkah...
Langkah 5.4.3.1
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 5.4.3.1.1
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 5.4.3.1.1.1
Terapkan kaidah hasil kali ke .
Langkah 5.4.3.1.1.2
Naikkan menjadi pangkat .
Langkah 5.4.3.1.1.3
Kalikan eksponen dalam .
Ketuk untuk lebih banyak langkah...
Langkah 5.4.3.1.1.3.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 5.4.3.1.1.3.2
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.4.3.1.1.3.2.1
Batalkan faktor persekutuan.
Langkah 5.4.3.1.1.3.2.2
Tulis kembali pernyataannya.
Langkah 5.4.3.1.1.4
Sederhanakan.
Langkah 5.4.3.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 5.4.3.2.1
Naikkan menjadi pangkat .
Langkah 5.4.4
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 5.4.4.1
Bagilah setiap suku di dengan .
Langkah 5.4.4.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 5.4.4.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.4.4.2.1.1
Batalkan faktor persekutuan.
Langkah 5.4.4.2.1.2
Bagilah dengan .
Langkah 5.4.4.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 5.4.4.3.1
Bagilah dengan .
Langkah 6
Tentukan nilai saat turunannya tidak terdefinisi.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Ubah persamaan dengan eksponen pecahan menjadi akar.
Ketuk untuk lebih banyak langkah...
Langkah 6.1.1
Gunakan rumus untuk menulis kembali eksponensiasi ke dalam bentuk akar.
Langkah 6.1.2
Gunakan rumus untuk menulis kembali eksponensiasi ke dalam bentuk akar.
Langkah 6.1.3
Apa pun yang dipangkatkan ke sama dengan bilangan pokok itu sendiri.
Langkah 6.2
Atur penyebut dalam agar sama dengan untuk menentukan di mana pernyataannya tidak terdefinisi.
Langkah 6.3
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 6.3.1
Untuk menghapus akar di sisi kiri persamaan, pangkatkan kedua sisi persamaan ke pangkat .
Langkah 6.3.2
Sederhanakan setiap sisi persamaan tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 6.3.2.1
Gunakan untuk menuliskan kembali sebagai .
Langkah 6.3.2.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 6.3.2.2.1
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 6.3.2.2.1.1
Terapkan kaidah hasil kali ke .
Langkah 6.3.2.2.1.2
Naikkan menjadi pangkat .
Langkah 6.3.2.2.1.3
Kalikan eksponen dalam .
Ketuk untuk lebih banyak langkah...
Langkah 6.3.2.2.1.3.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 6.3.2.2.1.3.2
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 6.3.2.2.1.3.2.1
Batalkan faktor persekutuan.
Langkah 6.3.2.2.1.3.2.2
Tulis kembali pernyataannya.
Langkah 6.3.2.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 6.3.2.3.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 6.3.3
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 6.3.3.1
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 6.3.3.1.1
Bagilah setiap suku di dengan .
Langkah 6.3.3.1.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 6.3.3.1.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 6.3.3.1.2.1.1
Batalkan faktor persekutuan.
Langkah 6.3.3.1.2.1.2
Bagilah dengan .
Langkah 6.3.3.1.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 6.3.3.1.3.1
Bagilah dengan .
Langkah 6.3.3.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Langkah 6.3.3.3
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 6.3.3.3.1
Tulis kembali sebagai .
Langkah 6.3.3.3.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 6.3.3.3.3
Tambah atau kurang adalah .
Langkah 6.4
Atur penyebut dalam agar sama dengan untuk menentukan di mana pernyataannya tidak terdefinisi.
Langkah 6.5
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 6.5.1
Untuk menghapus akar di sisi kiri persamaan, pangkatkan kedua sisi persamaan ke pangkat .
Langkah 6.5.2
Sederhanakan setiap sisi persamaan tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 6.5.2.1
Gunakan untuk menuliskan kembali sebagai .
Langkah 6.5.2.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 6.5.2.2.1
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 6.5.2.2.1.1
Terapkan kaidah hasil kali ke .
Langkah 6.5.2.2.1.2
Naikkan menjadi pangkat .
Langkah 6.5.2.2.1.3
Kalikan eksponen dalam .
Ketuk untuk lebih banyak langkah...
Langkah 6.5.2.2.1.3.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 6.5.2.2.1.3.2
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 6.5.2.2.1.3.2.1
Batalkan faktor persekutuan.
Langkah 6.5.2.2.1.3.2.2
Tulis kembali pernyataannya.
Langkah 6.5.2.2.1.4
Sederhanakan.
Langkah 6.5.2.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 6.5.2.3.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 6.5.3
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 6.5.3.1
Bagilah setiap suku di dengan .
Langkah 6.5.3.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 6.5.3.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 6.5.3.2.1.1
Batalkan faktor persekutuan.
Langkah 6.5.3.2.1.2
Bagilah dengan .
Langkah 6.5.3.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 6.5.3.3.1
Bagilah dengan .
Langkah 7
Titik kritis untuk dievaluasi.
Langkah 8
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 9
Evaluasi turunan keduanya.
Ketuk untuk lebih banyak langkah...
Langkah 9.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 9.1.1
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 9.1.1.1
Tulis kembali sebagai .
Langkah 9.1.1.2
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 9.1.1.3
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 9.1.1.3.1
Batalkan faktor persekutuan.
Langkah 9.1.1.3.2
Tulis kembali pernyataannya.
Langkah 9.1.1.4
Naikkan menjadi pangkat .
Langkah 9.1.2
Kalikan dengan .
Langkah 9.1.3
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 9.1.3.1
Tulis kembali sebagai .
Langkah 9.1.3.2
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 9.1.3.3
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 9.1.3.3.1
Batalkan faktor persekutuan.
Langkah 9.1.3.3.2
Tulis kembali pernyataannya.
Langkah 9.1.3.4
Naikkan menjadi pangkat .
Langkah 9.1.4
Kalikan dengan .
Langkah 9.1.5
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 9.1.5.1
Faktorkan dari .
Langkah 9.1.5.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 9.1.5.2.1
Faktorkan dari .
Langkah 9.1.5.2.2
Batalkan faktor persekutuan.
Langkah 9.1.5.2.3
Tulis kembali pernyataannya.
Langkah 9.2
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 9.2.1
Gabungkan pembilang dari penyebut persekutuan.
Langkah 9.2.2
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 9.2.2.1
Kurangi dengan .
Langkah 9.2.2.2
Pindahkan tanda negatif di depan pecahan.
Langkah 10
adalah maksimum lokal karena nilai dari turunan keduanya negatif. Ini disebut sebagai uji turunan kedua.
adalah maksimum lokal
Langkah 11
Tentukan nilai y ketika .
Ketuk untuk lebih banyak langkah...
Langkah 11.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 11.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 11.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 11.2.1.1
Tulis kembali sebagai .
Langkah 11.2.1.2
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 11.2.1.3
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 11.2.1.3.1
Batalkan faktor persekutuan.
Langkah 11.2.1.3.2
Tulis kembali pernyataannya.
Langkah 11.2.1.4
Naikkan menjadi pangkat .
Langkah 11.2.1.5
Kalikan dengan .
Langkah 11.2.1.6
Tulis kembali sebagai .
Langkah 11.2.1.7
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 11.2.1.8
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 11.2.1.8.1
Batalkan faktor persekutuan.
Langkah 11.2.1.8.2
Tulis kembali pernyataannya.
Langkah 11.2.1.9
Naikkan menjadi pangkat .
Langkah 11.2.1.10
Kalikan dengan .
Langkah 11.2.2
Kurangi dengan .
Langkah 11.2.3
Jawaban akhirnya adalah .
Langkah 12
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 13
Evaluasi turunan keduanya.
Ketuk untuk lebih banyak langkah...
Langkah 13.1
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 13.1.1
Tulis kembali sebagai .
Langkah 13.1.2
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 13.2
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 13.2.1
Batalkan faktor persekutuan.
Langkah 13.2.2
Tulis kembali pernyataannya.
Langkah 13.3
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 13.3.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 13.3.2
Kalikan dengan .
Langkah 13.3.3
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 13.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Tidak terdefinisi
Langkah 14
Karena setidaknya ada satu titik di atau turunan kedua yang tidak terdefinisikan, lakukan uji turunan pertama.
Ketuk untuk lebih banyak langkah...
Langkah 14.1
Bagi menjadi interval terpisah di sekitar nilai yang membuat turunan pertamanya atau tidak terdefinisi.
Langkah 14.2
Substitusikan bilangan apa pun, seperti , dari interval dalam turunan pertama untuk memeriksa apakah hasilnya negatif atau positif.
Ketuk untuk lebih banyak langkah...
Langkah 14.2.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 14.2.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 14.2.2.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 14.2.2.2
Tulis setiap pernyataan menggunakan penyebut umum dari , dengan mengalikan masing-masing pembilang dan penyebut dengan faktor dari yang sesuai.
Ketuk untuk lebih banyak langkah...
Langkah 14.2.2.2.1
Kalikan dengan .
Langkah 14.2.2.2.2
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 14.2.2.2.2.1
Pindahkan .
Langkah 14.2.2.2.2.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 14.2.2.2.2.3
Gabungkan pembilang dari penyebut persekutuan.
Langkah 14.2.2.2.2.4
Tambahkan dan .
Langkah 14.2.2.3
Gabungkan pembilang dari penyebut persekutuan.
Langkah 14.2.2.4
Jawaban akhirnya adalah .
Langkah 14.3
Substitusikan bilangan apa pun, seperti , dari interval dalam turunan pertama untuk memeriksa apakah hasilnya negatif atau positif.
Ketuk untuk lebih banyak langkah...
Langkah 14.3.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 14.3.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 14.3.2.1
Hilangkan tanda kurung.
Langkah 14.3.2.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 14.3.2.3
Tulis setiap pernyataan menggunakan penyebut umum dari , dengan mengalikan masing-masing pembilang dan penyebut dengan faktor dari yang sesuai.
Ketuk untuk lebih banyak langkah...
Langkah 14.3.2.3.1
Kalikan dengan .
Langkah 14.3.2.3.2
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 14.3.2.3.2.1
Pindahkan .
Langkah 14.3.2.3.2.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 14.3.2.3.2.3
Gabungkan pembilang dari penyebut persekutuan.
Langkah 14.3.2.3.2.4
Tambahkan dan .
Langkah 14.3.2.4
Gabungkan pembilang dari penyebut persekutuan.
Langkah 14.3.2.5
Kalikan .
Ketuk untuk lebih banyak langkah...
Langkah 14.3.2.5.1
Buang faktor negatif.
Langkah 14.3.2.5.2
Tulis kembali sebagai .
Langkah 14.3.2.5.3
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 14.3.2.5.4
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 14.3.2.5.5
Gabungkan dan .
Langkah 14.3.2.5.6
Gabungkan pembilang dari penyebut persekutuan.
Langkah 14.3.2.5.7
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 14.3.2.5.7.1
Kalikan dengan .
Langkah 14.3.2.5.7.2
Tambahkan dan .
Langkah 14.3.2.6
Jawaban akhirnya adalah .
Langkah 14.4
Substitusikan bilangan apa pun, seperti , dari interval dalam turunan pertama untuk memeriksa apakah hasilnya negatif atau positif.
Ketuk untuk lebih banyak langkah...
Langkah 14.4.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 14.4.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 14.4.2.1
Hilangkan tanda kurung.
Langkah 14.4.2.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 14.4.2.3
Tulis setiap pernyataan menggunakan penyebut umum dari , dengan mengalikan masing-masing pembilang dan penyebut dengan faktor dari yang sesuai.
Ketuk untuk lebih banyak langkah...
Langkah 14.4.2.3.1
Kalikan dengan .
Langkah 14.4.2.3.2
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 14.4.2.3.2.1
Pindahkan .
Langkah 14.4.2.3.2.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 14.4.2.3.2.3
Gabungkan pembilang dari penyebut persekutuan.
Langkah 14.4.2.3.2.4
Tambahkan dan .
Langkah 14.4.2.4
Gabungkan pembilang dari penyebut persekutuan.
Langkah 14.4.2.5
Jawaban akhirnya adalah .
Langkah 14.5
Karena turunan pertamanya tidak mengubah tanda-tanda di sekitar , ini bukan merupakan maksimum atau minimum lokal.
Bukan maksimum atau minimum lokal
Langkah 14.6
Karena turunan pertamanya diubah tandanya dari positif menjadi negatif di sekitar , maka adalah maksimum lokal.
adalah maksimum lokal
adalah maksimum lokal
Langkah 15