Kalkulus Contoh

Tentukan Maksimum dan Minimum Lokal f(x)=7x log alami dari x
Langkah 1
Tentukan turunan pertama dari fungsi.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 1.3
Turunan dari terhadap adalah .
Langkah 1.4
Diferensialkan menggunakan Kaidah Pangkat.
Ketuk untuk lebih banyak langkah...
Langkah 1.4.1
Gabungkan dan .
Langkah 1.4.2
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.4.2.1
Batalkan faktor persekutuan.
Langkah 1.4.2.2
Tulis kembali pernyataannya.
Langkah 1.4.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.4.4
Kalikan dengan .
Langkah 1.5
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.5.1
Terapkan sifat distributif.
Langkah 1.5.2
Kalikan dengan .
Langkah 1.5.3
Susun kembali suku-suku.
Langkah 2
Tentukan turunan kedua dari fungsi.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.2
Turunan dari terhadap adalah .
Langkah 2.2.3
Gabungkan dan .
Langkah 2.3
Diferensialkan menggunakan Aturan Konstanta.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.2
Tambahkan dan .
Langkah 3
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 4
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.2
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 4.1.3
Turunan dari terhadap adalah .
Langkah 4.1.4
Diferensialkan menggunakan Kaidah Pangkat.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.4.1
Gabungkan dan .
Langkah 4.1.4.2
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.4.2.1
Batalkan faktor persekutuan.
Langkah 4.1.4.2.2
Tulis kembali pernyataannya.
Langkah 4.1.4.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.4.4
Kalikan dengan .
Langkah 4.1.5
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.5.1
Terapkan sifat distributif.
Langkah 4.1.5.2
Kalikan dengan .
Langkah 4.1.5.3
Susun kembali suku-suku.
Langkah 4.2
Turunan pertama dari terhadap adalah .
Langkah 5
Buat turunan pertamanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Buat turunan pertamanya agar sama dengan .
Langkah 5.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 5.3
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.1
Bagilah setiap suku di dengan .
Langkah 5.3.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.3.2.1.1
Batalkan faktor persekutuan.
Langkah 5.3.2.1.2
Bagilah dengan .
Langkah 5.3.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.3.1
Bagilah dengan .
Langkah 5.4
Untuk menyelesaikan , tulis kembali persamaannya menggunakan sifat-sifat logaritma.
Langkah 5.5
Tulis kembali dalam bentuk eksponensial menggunakan aturan dasar logaritma. Jika dan adalah bilangan riil positif dan , maka setara dengan .
Langkah 5.6
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 5.6.1
Tulis kembali persamaan tersebut sebagai .
Langkah 5.6.2
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 6
Tentukan nilai saat turunannya tidak terdefinisi.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Atur argumen dalam agar lebih kecil dari atau sama dengan untuk menentukan di mana pernyataannya tidak terdefinisi.
Langkah 6.2
Persamaan tidak terdefinisi di mana penyebutnya sama dengan , argumen dari akar kuadratnya lebih kecil dari , atau argumen dari logaritmanya lebih kecil dari atau sama dengan .
Langkah 7
Titik kritis untuk dievaluasi.
Langkah 8
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 9
Kalikan pembilang dengan balikan dari penyebut.
Langkah 10
adalah minimum lokal karena nilai dari turunan keduanya positif. Ini disebut sebagai uji turunan kedua.
adalah minimum lokal
Langkah 11
Tentukan nilai y ketika .
Ketuk untuk lebih banyak langkah...
Langkah 11.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 11.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 11.2.1
Gabungkan dan .
Langkah 11.2.2
Tulis kembali sebagai .
Langkah 11.2.3
Tulis kembali sebagai .
Langkah 11.2.4
Gunakan aturan logaritma untuk memindahkan keluar dari eksponen.
Langkah 11.2.5
Log alami dari adalah .
Langkah 11.2.6
Kalikan dengan .
Langkah 11.2.7
Log alami dari adalah .
Langkah 11.2.8
Kurangi dengan .
Langkah 11.2.9
Kalikan .
Ketuk untuk lebih banyak langkah...
Langkah 11.2.9.1
Gabungkan dan .
Langkah 11.2.9.2
Kalikan dengan .
Langkah 11.2.10
Pindahkan tanda negatif di depan pecahan.
Langkah 11.2.11
Jawaban akhirnya adalah .
Langkah 12
Ini adalah ekstrem lokal untuk .
adalah minimum lokal
Langkah 13