Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Diferensialkan.
Langkah 1.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 1.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2
Evaluasi .
Langkah 1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.2
Tulis kembali sebagai .
Langkah 1.2.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.4
Kalikan dengan .
Langkah 1.3
Sederhanakan.
Langkah 1.3.1
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 1.3.2
Gabungkan suku-sukunya.
Langkah 1.3.2.1
Gabungkan dan .
Langkah 1.3.2.2
Pindahkan tanda negatif di depan pecahan.
Langkah 2
Langkah 2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 2.2
Evaluasi .
Langkah 2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.3
Kalikan dengan .
Langkah 2.3
Evaluasi .
Langkah 2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.2
Tulis kembali sebagai .
Langkah 2.3.3
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 2.3.3.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.3.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.3.3
Ganti semua kemunculan dengan .
Langkah 2.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.5
Kalikan eksponen dalam .
Langkah 2.3.5.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 2.3.5.2
Kalikan dengan .
Langkah 2.3.6
Kalikan dengan .
Langkah 2.3.7
Naikkan menjadi pangkat .
Langkah 2.3.8
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.3.9
Kurangi dengan .
Langkah 2.3.10
Kalikan dengan .
Langkah 2.4
Sederhanakan.
Langkah 2.4.1
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 2.4.2
Gabungkan dan .
Langkah 3
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 4
Langkah 4.1
Tentukan turunan pertamanya.
Langkah 4.1.1
Diferensialkan.
Langkah 4.1.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 4.1.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.2
Evaluasi .
Langkah 4.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.2.2
Tulis kembali sebagai .
Langkah 4.1.2.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.2.4
Kalikan dengan .
Langkah 4.1.3
Sederhanakan.
Langkah 4.1.3.1
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 4.1.3.2
Gabungkan suku-sukunya.
Langkah 4.1.3.2.1
Gabungkan dan .
Langkah 4.1.3.2.2
Pindahkan tanda negatif di depan pecahan.
Langkah 4.2
Turunan pertama dari terhadap adalah .
Langkah 5
Langkah 5.1
Buat turunan pertamanya agar sama dengan .
Langkah 5.2
Tentukan penyebut persekutuan terkecil dari suku-suku dalam persamaan tersebut.
Langkah 5.2.1
Menentukan penyebut sekutu terkecil dari daftar nilai sama dengan mencari KPK dari penyebut dari nilai-nilai-tersebut.
Langkah 5.2.2
KPK dari satu dan pernyataan apa pun adalah pernyataan itu sendiri.
Langkah 5.3
Kalikan setiap suku pada dengan untuk mengeliminasi pecahan.
Langkah 5.3.1
Kalikan setiap suku dalam dengan .
Langkah 5.3.2
Sederhanakan sisi kirinya.
Langkah 5.3.2.1
Sederhanakan setiap suku.
Langkah 5.3.2.1.1
Kalikan dengan dengan menambahkan eksponennya.
Langkah 5.3.2.1.1.1
Pindahkan .
Langkah 5.3.2.1.1.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 5.3.2.1.1.3
Tambahkan dan .
Langkah 5.3.2.1.2
Batalkan faktor persekutuan dari .
Langkah 5.3.2.1.2.1
Pindahkan negatif pertama pada ke dalam pembilangnya.
Langkah 5.3.2.1.2.2
Batalkan faktor persekutuan.
Langkah 5.3.2.1.2.3
Tulis kembali pernyataannya.
Langkah 5.3.3
Sederhanakan sisi kanannya.
Langkah 5.3.3.1
Kalikan dengan .
Langkah 5.4
Selesaikan persamaan.
Langkah 5.4.1
Tambahkan ke kedua sisi persamaan.
Langkah 5.4.2
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 5.4.2.1
Bagilah setiap suku di dengan .
Langkah 5.4.2.2
Sederhanakan sisi kirinya.
Langkah 5.4.2.2.1
Batalkan faktor persekutuan dari .
Langkah 5.4.2.2.1.1
Batalkan faktor persekutuan.
Langkah 5.4.2.2.1.2
Bagilah dengan .
Langkah 5.4.2.3
Sederhanakan sisi kanannya.
Langkah 5.4.2.3.1
Bagilah dengan .
Langkah 5.4.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Langkah 5.4.4
Sebarang akar dari adalah .
Langkah 6
Langkah 6.1
Atur penyebut dalam agar sama dengan untuk menentukan di mana pernyataannya tidak terdefinisi.
Langkah 6.2
Selesaikan .
Langkah 6.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Langkah 6.2.2
Sederhanakan .
Langkah 6.2.2.1
Tulis kembali sebagai .
Langkah 6.2.2.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 6.2.2.3
Tambah atau kurang adalah .
Langkah 7
Titik kritis untuk dievaluasi.
Langkah 8
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 9
Langkah 9.1
Sederhanakan setiap suku.
Langkah 9.1.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 9.1.2
Kalikan dengan .
Langkah 9.1.3
Satu dipangkat berapa pun sama dengan satu.
Langkah 9.1.4
Bagilah dengan .
Langkah 9.2
Tambahkan dan .
Langkah 10
adalah minimum lokal karena nilai dari turunan keduanya positif. Ini disebut sebagai uji turunan kedua.
adalah minimum lokal
Langkah 11
Langkah 11.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 11.2
Sederhanakan hasilnya.
Langkah 11.2.1
Sederhanakan setiap suku.
Langkah 11.2.1.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 11.2.1.2
Bagilah dengan .
Langkah 11.2.2
Tambahkan dan .
Langkah 11.2.3
Jawaban akhirnya adalah .
Langkah 12
Ini adalah ekstrem lokal untuk .
adalah minimum lokal
Langkah 13