Kalkulus Contoh

Tentukan Maksimum dan Minimum Lokal f(x)=x^4+4/x
Langkah 1
Tentukan turunan pertama dari fungsi.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 1.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.2
Tulis kembali sebagai .
Langkah 1.2.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.4
Kalikan dengan .
Langkah 1.3
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 1.3.2
Gabungkan suku-sukunya.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.2.1
Gabungkan dan .
Langkah 1.3.2.2
Pindahkan tanda negatif di depan pecahan.
Langkah 2
Tentukan turunan kedua dari fungsi.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 2.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.3
Kalikan dengan .
Langkah 2.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.2
Tulis kembali sebagai .
Langkah 2.3.3
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.3.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.3.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.3.3
Ganti semua kemunculan dengan .
Langkah 2.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.5
Kalikan eksponen dalam .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.5.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 2.3.5.2
Kalikan dengan .
Langkah 2.3.6
Kalikan dengan .
Langkah 2.3.7
Naikkan menjadi pangkat .
Langkah 2.3.8
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.3.9
Kurangi dengan .
Langkah 2.3.10
Kalikan dengan .
Langkah 2.4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.4.1
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 2.4.2
Gabungkan dan .
Langkah 3
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 4
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.1
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 4.1.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.2.2
Tulis kembali sebagai .
Langkah 4.1.2.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.2.4
Kalikan dengan .
Langkah 4.1.3
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.3.1
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 4.1.3.2
Gabungkan suku-sukunya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.3.2.1
Gabungkan dan .
Langkah 4.1.3.2.2
Pindahkan tanda negatif di depan pecahan.
Langkah 4.2
Turunan pertama dari terhadap adalah .
Langkah 5
Buat turunan pertamanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Buat turunan pertamanya agar sama dengan .
Langkah 5.2
Tentukan penyebut persekutuan terkecil dari suku-suku dalam persamaan tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1
Menentukan penyebut sekutu terkecil dari daftar nilai sama dengan mencari KPK dari penyebut dari nilai-nilai-tersebut.
Langkah 5.2.2
KPK dari satu dan pernyataan apa pun adalah pernyataan itu sendiri.
Langkah 5.3
Kalikan setiap suku pada dengan untuk mengeliminasi pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.1
Kalikan setiap suku dalam dengan .
Langkah 5.3.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.2.1.1
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.2.1.1.1
Pindahkan .
Langkah 5.3.2.1.1.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 5.3.2.1.1.3
Tambahkan dan .
Langkah 5.3.2.1.2
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.3.2.1.2.1
Pindahkan negatif pertama pada ke dalam pembilangnya.
Langkah 5.3.2.1.2.2
Batalkan faktor persekutuan.
Langkah 5.3.2.1.2.3
Tulis kembali pernyataannya.
Langkah 5.3.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.3.1
Kalikan dengan .
Langkah 5.4
Selesaikan persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 5.4.1
Tambahkan ke kedua sisi persamaan.
Langkah 5.4.2
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 5.4.2.1
Bagilah setiap suku di dengan .
Langkah 5.4.2.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 5.4.2.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.4.2.2.1.1
Batalkan faktor persekutuan.
Langkah 5.4.2.2.1.2
Bagilah dengan .
Langkah 5.4.2.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 5.4.2.3.1
Bagilah dengan .
Langkah 5.4.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Langkah 5.4.4
Sebarang akar dari adalah .
Langkah 6
Tentukan nilai saat turunannya tidak terdefinisi.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Atur penyebut dalam agar sama dengan untuk menentukan di mana pernyataannya tidak terdefinisi.
Langkah 6.2
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Langkah 6.2.2
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 6.2.2.1
Tulis kembali sebagai .
Langkah 6.2.2.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 6.2.2.3
Tambah atau kurang adalah .
Langkah 7
Titik kritis untuk dievaluasi.
Langkah 8
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 9
Evaluasi turunan keduanya.
Ketuk untuk lebih banyak langkah...
Langkah 9.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 9.1.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 9.1.2
Kalikan dengan .
Langkah 9.1.3
Satu dipangkat berapa pun sama dengan satu.
Langkah 9.1.4
Bagilah dengan .
Langkah 9.2
Tambahkan dan .
Langkah 10
adalah minimum lokal karena nilai dari turunan keduanya positif. Ini disebut sebagai uji turunan kedua.
adalah minimum lokal
Langkah 11
Tentukan nilai y ketika .
Ketuk untuk lebih banyak langkah...
Langkah 11.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 11.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 11.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 11.2.1.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 11.2.1.2
Bagilah dengan .
Langkah 11.2.2
Tambahkan dan .
Langkah 11.2.3
Jawaban akhirnya adalah .
Langkah 12
Ini adalah ekstrem lokal untuk .
adalah minimum lokal
Langkah 13