Kalkulus Contoh

Tentukan Maksimum dan Minimum Lokal y=sin(x+pi/2)
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Tentukan turunan pertama dari fungsi.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.1.2
Turunan dari terhadap adalah .
Langkah 2.1.3
Ganti semua kemunculan dengan .
Langkah 2.2
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.4
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.4.1
Tambahkan dan .
Langkah 2.2.4.2
Kalikan dengan .
Langkah 3
Tentukan turunan kedua dari fungsi.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 3.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.1.2
Turunan dari terhadap adalah .
Langkah 3.1.3
Ganti semua kemunculan dengan .
Langkah 3.2
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 3.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.2.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.2.4
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.4.1
Tambahkan dan .
Langkah 3.2.4.2
Kalikan dengan .
Langkah 4
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 5
Ambil kosinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam kosinus.
Langkah 6
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Nilai eksak dari adalah .
Langkah 7
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 7.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 7.3
Kurangi dengan .
Langkah 7.4
Bagilah dengan .
Langkah 8
Fungsi kosinus positif pada kuadran pertama dan keempat. Untuk menghitung penyelesaian kedua, kurangi sudut acuan dari untuk menemukan penyelesaian pada kuadran keempat.
Langkah 9
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 9.1
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 9.1.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 9.1.2
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 9.1.2.1
Gabungkan dan .
Langkah 9.1.2.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 9.1.3
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 9.1.3.1
Kalikan dengan .
Langkah 9.1.3.2
Kurangi dengan .
Langkah 9.2
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 9.2.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 9.2.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 9.2.3
Kurangi dengan .
Langkah 9.2.4
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 9.2.4.1
Batalkan faktor persekutuan.
Langkah 9.2.4.2
Bagilah dengan .
Langkah 10
Penyelesaian untuk persamaan .
Langkah 11
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 12
Evaluasi turunan keduanya.
Ketuk untuk lebih banyak langkah...
Langkah 12.1
Tambahkan dan .
Langkah 12.2
Nilai eksak dari adalah .
Langkah 12.3
Kalikan dengan .
Langkah 13
adalah maksimum lokal karena nilai dari turunan keduanya negatif. Ini disebut sebagai uji turunan kedua.
adalah maksimum lokal
Langkah 14
Tentukan nilai y ketika .
Ketuk untuk lebih banyak langkah...
Langkah 14.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 14.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 14.2.1
Tambahkan dan .
Langkah 14.2.2
Nilai eksak dari adalah .
Langkah 14.2.3
Jawaban akhirnya adalah .
Langkah 15
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 16
Evaluasi turunan keduanya.
Ketuk untuk lebih banyak langkah...
Langkah 16.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 16.2
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 16.2.1
Gabungkan dan .
Langkah 16.2.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 16.3
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 16.3.1
Pindahkan ke sebelah kiri .
Langkah 16.3.2
Tambahkan dan .
Langkah 16.4
Terapkan sudut acuan dengan mencari sudut dengan nilai-nilai-trigonometri yang setara di kuadran pertama. Buat pernyataannya negatif karena sinus negatif di kuadran keempat.
Langkah 16.5
Nilai eksak dari adalah .
Langkah 16.6
Kalikan .
Ketuk untuk lebih banyak langkah...
Langkah 16.6.1
Kalikan dengan .
Langkah 16.6.2
Kalikan dengan .
Langkah 17
adalah minimum lokal karena nilai dari turunan keduanya positif. Ini disebut sebagai uji turunan kedua.
adalah minimum lokal
Langkah 18
Tentukan nilai y ketika .
Ketuk untuk lebih banyak langkah...
Langkah 18.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 18.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 18.2.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 18.2.2
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 18.2.2.1
Gabungkan dan .
Langkah 18.2.2.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 18.2.3
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 18.2.3.1
Pindahkan ke sebelah kiri .
Langkah 18.2.3.2
Tambahkan dan .
Langkah 18.2.4
Terapkan sudut acuan dengan mencari sudut dengan nilai-nilai-trigonometri yang setara di kuadran pertama. Buat pernyataannya negatif karena sinus negatif di kuadran keempat.
Langkah 18.2.5
Nilai eksak dari adalah .
Langkah 18.2.6
Kalikan dengan .
Langkah 18.2.7
Jawaban akhirnya adalah .
Langkah 19
Ini adalah ekstrem lokal untuk .
adalah maksimum lokal
adalah minimum lokal
Langkah 20