Kalkulus Contoh

Tentukan Maksimum dan Minimum Lokal y=x^4e^(-x)
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Tentukan turunan pertama dari fungsi.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 2.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.2.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana (Variabel2)=.
Langkah 2.2.3
Ganti semua kemunculan dengan .
Langkah 2.3
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.3
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.3.1
Kalikan dengan .
Langkah 2.3.3.2
Pindahkan ke sebelah kiri .
Langkah 2.3.3.3
Tulis kembali sebagai .
Langkah 2.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.4.1
Susun kembali suku-suku.
Langkah 2.4.2
Susun kembali faktor-faktor dalam .
Langkah 3
Tentukan turunan kedua dari fungsi.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 3.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.2.2
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 3.2.3
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.3.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.2.3.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana (Variabel2)=.
Langkah 3.2.3.3
Ganti semua kemunculan dengan .
Langkah 3.2.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.2.5
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.2.6
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.2.7
Kalikan dengan .
Langkah 3.2.8
Pindahkan ke sebelah kiri .
Langkah 3.2.9
Tulis kembali sebagai .
Langkah 3.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3.2
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 3.3.3
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 3.3.3.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.3.3.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana (Variabel2)=.
Langkah 3.3.3.3
Ganti semua kemunculan dengan .
Langkah 3.3.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3.5
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.3.6
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.3.7
Kalikan dengan .
Langkah 3.3.8
Pindahkan ke sebelah kiri .
Langkah 3.3.9
Tulis kembali sebagai .
Langkah 3.4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 3.4.1
Terapkan sifat distributif.
Langkah 3.4.2
Terapkan sifat distributif.
Langkah 3.4.3
Gabungkan suku-sukunya.
Ketuk untuk lebih banyak langkah...
Langkah 3.4.3.1
Kalikan dengan .
Langkah 3.4.3.2
Kalikan dengan .
Langkah 3.4.3.3
Kalikan dengan .
Langkah 3.4.3.4
Kalikan dengan .
Langkah 3.4.3.5
Kalikan dengan .
Langkah 3.4.3.6
Kurangi dengan .
Ketuk untuk lebih banyak langkah...
Langkah 3.4.3.6.1
Pindahkan .
Langkah 3.4.3.6.2
Kurangi dengan .
Langkah 3.4.4
Susun kembali suku-suku.
Langkah 3.4.5
Susun kembali faktor-faktor dalam .
Langkah 4
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 5
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 5.1.1
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 5.1.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 5.1.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 5.1.2.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana (Variabel2)=.
Langkah 5.1.2.3
Ganti semua kemunculan dengan .
Langkah 5.1.3
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 5.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 5.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 5.1.3.3
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 5.1.3.3.1
Kalikan dengan .
Langkah 5.1.3.3.2
Pindahkan ke sebelah kiri .
Langkah 5.1.3.3.3
Tulis kembali sebagai .
Langkah 5.1.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 5.1.4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 5.1.4.1
Susun kembali suku-suku.
Langkah 5.1.4.2
Susun kembali faktor-faktor dalam .
Langkah 5.2
Turunan pertama dari terhadap adalah .
Langkah 6
Buat turunan pertamanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Buat turunan pertamanya agar sama dengan .
Langkah 6.2
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1
Faktorkan dari .
Langkah 6.2.2
Faktorkan dari .
Langkah 6.2.3
Faktorkan dari .
Langkah 6.3
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 6.4
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 6.4.1
Atur sama dengan .
Langkah 6.4.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 6.4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Langkah 6.4.2.2
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 6.4.2.2.1
Tulis kembali sebagai .
Langkah 6.4.2.2.2
Tarik suku-suku keluar dari bawah akar, dengan asumsi bilangan-bilangan riil.
Langkah 6.5
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 6.5.1
Atur sama dengan .
Langkah 6.5.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 6.5.2.1
Ambil logaritma alami dari kedua sisi persamaan untuk menghapus variabel dari eksponennya.
Langkah 6.5.2.2
Persamaannya tidak dapat diselesaikan karena tidak terdefinisi.
Tidak terdefinisi
Langkah 6.5.2.3
Tidak ada penyelesaian untuk
Tidak ada penyelesaian
Tidak ada penyelesaian
Tidak ada penyelesaian
Langkah 6.6
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 6.6.1
Atur sama dengan .
Langkah 6.6.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 6.6.2.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 6.6.2.2
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 6.6.2.2.1
Bagilah setiap suku di dengan .
Langkah 6.6.2.2.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 6.6.2.2.2.1
Membagi dua nilai negatif menghasilkan nilai positif.
Langkah 6.6.2.2.2.2
Bagilah dengan .
Langkah 6.6.2.2.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 6.6.2.2.3.1
Bagilah dengan .
Langkah 6.7
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 7
Tentukan nilai saat turunannya tidak terdefinisi.
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Domain dari pernyataan adalah semua bilangan riil, kecuali di mana pernyataannya tidak terdefinisi. Dalam hal ini, tidak ada bilangan riil yang membuat pernyataannya tidak terdefinisi.
Langkah 8
Titik kritis untuk dievaluasi.
Langkah 9
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 10
Evaluasi turunan keduanya.
Ketuk untuk lebih banyak langkah...
Langkah 10.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 10.1.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 10.1.2
Kalikan dengan .
Langkah 10.1.3
Apa pun yang dinaikkan ke adalah .
Langkah 10.1.4
Kalikan dengan .
Langkah 10.1.5
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 10.1.6
Kalikan dengan .
Langkah 10.1.7
Kalikan dengan .
Langkah 10.1.8
Apa pun yang dinaikkan ke adalah .
Langkah 10.1.9
Kalikan dengan .
Langkah 10.1.10
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 10.1.11
Kalikan dengan .
Langkah 10.1.12
Kalikan dengan .
Langkah 10.1.13
Apa pun yang dinaikkan ke adalah .
Langkah 10.1.14
Kalikan dengan .
Langkah 10.2
Sederhanakan dengan menambahkan bilangan.
Ketuk untuk lebih banyak langkah...
Langkah 10.2.1
Tambahkan dan .
Langkah 10.2.2
Tambahkan dan .
Langkah 11
Karena setidaknya ada satu titik di atau turunan kedua yang tidak terdefinisikan, lakukan uji turunan pertama.
Ketuk untuk lebih banyak langkah...
Langkah 11.1
Bagi menjadi interval terpisah di sekitar nilai yang membuat turunan pertamanya atau tidak terdefinisi.
Langkah 11.2
Substitusikan bilangan apa pun, seperti , dari interval dalam turunan pertama untuk memeriksa apakah hasilnya negatif atau positif.
Ketuk untuk lebih banyak langkah...
Langkah 11.2.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 11.2.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 11.2.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 11.2.2.1.1
Naikkan menjadi pangkat .
Langkah 11.2.2.1.2
Kalikan dengan .
Langkah 11.2.2.1.3
Kalikan dengan .
Langkah 11.2.2.1.4
Naikkan menjadi pangkat .
Langkah 11.2.2.1.5
Kalikan dengan .
Langkah 11.2.2.1.6
Kalikan dengan .
Langkah 11.2.2.2
Kurangi dengan .
Langkah 11.2.2.3
Jawaban akhirnya adalah .
Langkah 11.3
Substitusikan bilangan apa pun, seperti , dari interval dalam turunan pertama untuk memeriksa apakah hasilnya negatif atau positif.
Ketuk untuk lebih banyak langkah...
Langkah 11.3.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 11.3.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 11.3.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 11.3.2.1.1
Naikkan menjadi pangkat .
Langkah 11.3.2.1.2
Kalikan dengan .
Langkah 11.3.2.1.3
Kalikan dengan .
Langkah 11.3.2.1.4
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 11.3.2.1.5
Gabungkan dan .
Langkah 11.3.2.1.6
Pindahkan tanda negatif di depan pecahan.
Langkah 11.3.2.1.7
Naikkan menjadi pangkat .
Langkah 11.3.2.1.8
Kalikan dengan .
Langkah 11.3.2.1.9
Kalikan dengan .
Langkah 11.3.2.1.10
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 11.3.2.1.11
Gabungkan dan .
Langkah 11.3.2.2
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 11.3.2.2.1
Gabungkan pembilang dari penyebut persekutuan.
Langkah 11.3.2.2.2
Tambahkan dan .
Langkah 11.3.2.3
Jawaban akhirnya adalah .
Langkah 11.4
Substitusikan bilangan apa pun, seperti , dari interval dalam turunan pertama untuk memeriksa apakah hasilnya negatif atau positif.
Ketuk untuk lebih banyak langkah...
Langkah 11.4.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 11.4.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 11.4.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 11.4.2.1.1
Naikkan menjadi pangkat .
Langkah 11.4.2.1.2
Kalikan dengan .
Langkah 11.4.2.1.3
Kalikan dengan .
Langkah 11.4.2.1.4
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 11.4.2.1.5
Gabungkan dan .
Langkah 11.4.2.1.6
Pindahkan tanda negatif di depan pecahan.
Langkah 11.4.2.1.7
Naikkan menjadi pangkat .
Langkah 11.4.2.1.8
Kalikan dengan .
Langkah 11.4.2.1.9
Kalikan dengan .
Langkah 11.4.2.1.10
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 11.4.2.1.11
Gabungkan dan .
Langkah 11.4.2.2
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 11.4.2.2.1
Gabungkan pembilang dari penyebut persekutuan.
Langkah 11.4.2.2.2
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 11.4.2.2.2.1
Tambahkan dan .
Langkah 11.4.2.2.2.2
Pindahkan tanda negatif di depan pecahan.
Langkah 11.4.2.3
Jawaban akhirnya adalah .
Langkah 11.5
Karena turunan pertamanya diubah tandanya dari negatif menjadi positif di sekitar , maka adalah minimum lokal.
adalah minimum lokal
Langkah 11.6
Karena turunan pertamanya diubah tandanya dari positif menjadi negatif di sekitar , maka adalah maksimum lokal.
adalah maksimum lokal
Langkah 11.7
Ini adalah ekstrem lokal untuk .
adalah minimum lokal
adalah maksimum lokal
adalah minimum lokal
adalah maksimum lokal
Langkah 12