Masukkan soal...
Kalkulus Contoh
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3
Langkah 3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.3
Kalikan dengan .
Langkah 4
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 5
Langkah 5.1
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 5.2
Turunan pertama dari terhadap adalah .
Langkah 6
Langkah 6.1
Buat turunan pertamanya agar sama dengan .
Langkah 6.2
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 6.2.1
Bagilah setiap suku di dengan .
Langkah 6.2.2
Sederhanakan sisi kirinya.
Langkah 6.2.2.1
Batalkan faktor persekutuan dari .
Langkah 6.2.2.1.1
Batalkan faktor persekutuan.
Langkah 6.2.2.1.2
Bagilah dengan .
Langkah 6.2.3
Sederhanakan sisi kanannya.
Langkah 6.2.3.1
Bagilah dengan .
Langkah 7
Langkah 7.1
Domain dari pernyataan adalah semua bilangan riil, kecuali di mana pernyataannya tidak terdefinisi. Dalam hal ini, tidak ada bilangan riil yang membuat pernyataannya tidak terdefinisi.
Langkah 8
Titik kritis untuk dievaluasi.
Langkah 9
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 10
adalah minimum lokal karena nilai dari turunan keduanya positif. Ini disebut sebagai uji turunan kedua.
adalah minimum lokal
Langkah 11
Langkah 11.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 11.2
Sederhanakan hasilnya.
Langkah 11.2.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 11.2.2
Jawaban akhirnya adalah .
Langkah 12
Ini adalah ekstrem lokal untuk .
adalah minimum lokal
Langkah 13